题目大意:n个点,m个条信息。P 代表a在b北距离为c,V代表a,在b北至少1
问有没有冲突的信息。
思路:根据a-b=c公式我们可以推出a-b<=c&&a-b>=-c,并且a-b>=1
那么对于第一个公式我们可以分别正向和逆向建图。后者单向建图。然后进行最短路如果出现负权环则代表,有冲突(可以找3组数据画出来看看)。如果没有冲突的话肯定整个图是平衡的正逆向和为0,有冲突则出现环。
那么我们可以SPFA,但是注意SPFA用法必须保证整个图 是联通的所以建立源点链接所有的点,再判负环,(SPFA负环判定方法为找到一个数在队列中出现的次数大于共有的点数。而贝尔曼是松弛后还能松弛的问题)。
#include<map>
#include<queue>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<stack>
#include<cstring>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int cnt;
struct node{
int to,w,next;
}q[101010*4];
bool vis[1010];
int head[100010*4],st,en,dis[1110],n,qu[101010*4];
int tmp[1100];
void bu(int a,int b,int c){
q[cnt].to=b;
q[cnt].w=c;
q[cnt].next=head[a];
head[a]=cnt++;
}
bool SPFA(){
for(int i=0;i<=en;i++){
tmp[i]=0;
dis[i]=inf;
vis[i]=false;
}
dis[st]=0;
vis[st]=true;
int f1,f2;
f2=f1=0;
qu[f1++]=st;
while(f1>f2){
int u=qu[f2++];
tmp[u]++;
if(tmp[u]>n) return false;
vis[u]=false;
for(int i=head[u];~i;i=q[i].next){
int v=q[i].to;
if(dis[v]>dis[u]+q[i].w){
dis[v]=dis[u]+q[i].w;
if(!vis[v]){
vis[v]=true;
qu[f1++]=v;
}
}
}
}
return true;
}
int main(){
int m,i,j,k,nu;
while( ~scanf("%d%d",&n,&m)){
memset(head,-1,sizeof(head));
getchar();
char c;int w,a,b;
cnt=0;
for(i=0;i<m;i++){
scanf("%c",&c);
if(c=='P'){
scanf("%d%d%d",&a,&b,&w);
bu(b,a,w);
bu(a,b,-w);
}
else if(c=='V'){
scanf("%d%d",&a,&b);
bu(a,b,-1);
}
getchar();
}
for(i=1;i<=n;i++){
bu(0,i,0);
}
st=0,en=n;
bool bj=SPFA();
if(bj)
printf("Reliable\n");
else
printf("Unreliable\n");
}
return 0;
}