POJ 2983 Is the Information Reliable? (约束差分系统||SPFA判负权环)

题目大意:n个点,m个条信息。P 代表a在b北距离为c,V代表a,在b北至少1
问有没有冲突的信息。

思路:根据a-b=c公式我们可以推出a-b<=c&&a-b>=-c,并且a-b>=1
那么对于第一个公式我们可以分别正向和逆向建图。后者单向建图。然后进行最短路如果出现负权环则代表,有冲突(可以找3组数据画出来看看)。如果没有冲突的话肯定整个图是平衡的正逆向和为0,有冲突则出现环。
那么我们可以SPFA,但是注意SPFA用法必须保证整个图 是联通的所以建立源点链接所有的点,再判负环,(SPFA负环判定方法为找到一个数在队列中出现的次数大于共有的点数。而贝尔曼是松弛后还能松弛的问题)。

#include<map>
#include<queue>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<stack>
#include<cstring>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int cnt;
struct node{
    int to,w,next;
}q[101010*4];
bool vis[1010];
int head[100010*4],st,en,dis[1110],n,qu[101010*4];
int tmp[1100];
void bu(int a,int b,int c){
    q[cnt].to=b;
    q[cnt].w=c;
    q[cnt].next=head[a];
    head[a]=cnt++;
}
bool SPFA(){
    for(int i=0;i<=en;i++){
        tmp[i]=0;
        dis[i]=inf;
        vis[i]=false;
    }
    dis[st]=0;
    vis[st]=true;
    int f1,f2;
    f2=f1=0;
    qu[f1++]=st;
    while(f1>f2){
        int u=qu[f2++];
        tmp[u]++;
        if(tmp[u]>n) return false;
        vis[u]=false;
        for(int i=head[u];~i;i=q[i].next){
            int v=q[i].to;
            if(dis[v]>dis[u]+q[i].w){
                dis[v]=dis[u]+q[i].w;
                if(!vis[v]){
                    vis[v]=true;
                    qu[f1++]=v;
                }
            }
        }
    }
    return true;
}
int main(){
    int m,i,j,k,nu;
    while( ~scanf("%d%d",&n,&m)){
        memset(head,-1,sizeof(head));
        getchar();
        char c;int w,a,b;
        cnt=0;
        for(i=0;i<m;i++){
            scanf("%c",&c);
            if(c=='P'){
                scanf("%d%d%d",&a,&b,&w);
                bu(b,a,w);
                bu(a,b,-w);
            }
            else if(c=='V'){
                scanf("%d%d",&a,&b);
                bu(a,b,-1);
            }
            getchar();
        }
        for(i=1;i<=n;i++){
            bu(0,i,0);
        }
        st=0,en=n;
        bool bj=SPFA();
        if(bj)
            printf("Reliable\n");
        else
            printf("Unreliable\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值