石子合并(一)
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
-
输入
-
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
- 输出总代价的最小值,占单独的一行 样例输入
-
3 1 2 3 7 13 7 8 16 21 4 18
样例输出
-
9 239
来源
-
有多组测试数据,输入到文件结束。
区间dp,设dp[i][j]表示合并第i堆石子导第j堆石子所花的最小代价,那么dp[i][j] = min(dp[i][k] + dp[k + 1][j] + sum[i][j])
#include <map>
#include <set>
#include <list>
#include <stack>
#include <queue>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 220;
const int inf = 0x3f3f3f3f;
int w[N];
int dp[N][N];
int sum[N];
int main()
{
int n;
while (~scanf("%d", &n))
{
sum[0] = 0;
for (int i = 1; i <= n; i++)
{
scanf("%d", &w[i]);
sum[i] = sum[i - 1] + w[i];
}
memset (dp, 0, sizeof(dp));
for (int i = n; i >= 1; i--)
{
for (int j = i + 1; j <= n; j++)
{
int tmp = inf;
for (int k = i; k < j; k++)
{
tmp = min(tmp, dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]);
}
dp[i][j] = tmp;
}
}
printf("%d\n", dp[1][n]);
}
return 0;
}