机器学习——logistic回归

 

目录

一、什么是Logistic回归?

        1.基本概念

        2.使用Logistic回归处理数据分析 

 二、Logistic回归的步骤

1.构造预测函数

2.使损失函数最小并求得回归参数

三、代码实现 

1.准备数据集:100个数据量

2.读取文件

 3.求出回归参数并画出决策边界

 4.随机梯度上升

 5.改进版随机梯度上升

6.完整代码

 四、总结

1.Logistic回归的主要用途 

2.当模型效果不理想的时候,可调整的策略有


一、什么是Logistic回归?

       1.基本概念

它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),通过给定的n组数据(训练集)来训练模型,并在训练结束后对给定的一组或多组数据(测试集)进行分类。其中每一组数据都是由p 个指标构成。

      2.使用Logistic回归处理数据分析 

  假设有3个指标(工资,年龄,可贷款金额),然后需要根据工资和年龄来判断这个人的可贷款金额大概是多少。

工资年龄可贷款金额
40002620000
80003670000
120004685000

假设以工资为x1轴,年龄为x2轴,可贷款金额为Y轴,可以建立一个3维的空间点

 二、Logistic回归的步骤

1.构造预测函数

由于线性回归的输出值域为负无穷到正无穷,不能直接应用于分类,可以构造一个sigmoid()函数,将大于0的值映射为1,小于0的值映射为0,这样我们就可以达到分类的目的。

首先线性回归模型可以为:z=w^{T}x+b ,然后对回归值进行变换:y=g(z)=g(w^{T}+b)

得到对数几率函数:g(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{-(w^{T}x+b)}},将z值转化为一个接近0或1的y值,且当z值远离0时,y值迅速靠近0或1。

p(y=1|x)=\frac{e^{w^{T}x+b}}{1+e^{w^{T}x+b}}

p(y=0|x)=\frac{1}{1+e^{w^{T}x+b}}

代码如下

import matplotlib.pyplot as plt
import numpy as np

def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-z))

z = np.arange(-6, 6, 0.05)
plt.plot(z, sigmoid(z))
plt.axvline(0.0, color='k')
plt.axhline(y=0.0, ls='dotted', color='k')
plt.axhline(y=1.0, ls='dotted', color='k')
plt.axhline(y=0.5, ls='dotted', color='k')
plt.yticks([0.0, 0.5, 1.0])
plt.ylim(-0.1, 1.1)
plt.show()

 结果如下:

2.使损失函数最小并求得回归参数

基于最优化方法的最佳回归系数确定有三种方法:极大似然法估计梯度上升法梯度下降法,以下主要讲解梯度上升法的使用。

 梯度上升法:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。如果梯度记为∇ ,则函数f(x,y)的梯度由下式表示:

梯度上升算法到达每个点后都会重新估计移动的方向。从P0开始,计算完该点的梯度,函数就根据梯度移动到下一点P1。在P1点,梯度再次被重新计算,并沿新的梯度方向移动到P2.如此循环迭代,知道满足通知条件。迭代的过程中,梯度算子总是保证我们能选取到最佳的移动方向。

三、代码实现 

1.准备数据集:100个数据量

-0.017612   14.053064   0
-1.395634   4.662541    1
-0.752157   6.538620    0
-1.322371   7.152853    0
0.423363    11.054677   0
0.406704    7.067335    1
0.667394    12.741452   0
-2.460150   6.866805    1
0.569411    9.548755    0
-0.026632   10.427743   0
0.850433    6.920334    1
1.347183    13.175500   0
1.176813    3.167020    1
-1.781871   9.097953    0
-0.566606   5.749003    1
0.931635    1.589505    1
-0.024205   6.151823    1
-0.036453   2.690988    1
-0.196949   0.444165    1
1.014459    5.754399    1
1.985298    3.230619    1
-1.693453   -0.557540   1
-0.576525   11.778922   0
-0.346811   -1.678730   1
-2.124484   2.672471    1
1.217916    9.597015    0
-0.733928   9.098687    0
-3.642001   -1.618087   1
0.315985    3.523953    1
1.416614    9.619232    0
-0.386323   3.989286    1
0.556921    8.294984    1
1.224863    11.587360   0
-1.347803   -2.406051   1
1.196604    4.951851    1
0.275221    9.543647    0
0.470575    9.332488    0
-1.889567   9.542662    0
-1.527893   12.150579   0
-1.185247   11.309318   0
-0.445678   3.297303    1
1.042222    6.105155    1
-0.618787   10.320986   0
1.152083    0.548467    1
0.828534    2.676045    1
-1.237728   10.549033   0
-0.683565   -2.166125   1
0.229456    5.921938    1
-0.959885   11.555336   0
0.492911    10.993324   0
0.184992    8.721488    0
-0.355715   10.325976   0
-0.397822   8.058397    0
0.824839    13.730343   0
1.507278    5.027866    1
0.099671    6.835839    1
-0.344008   10.717485   0
1.785928    7.718645    1
-0.918801   11.560217   0
-0.364009   4.747300    1
-0.841722   4.119083    1
0.490426    1.960539    1
-0.007194   9.075792    0
0.356107    12.447863   0
0.342578    12.281162   0
-0.810823   -1.466018   1
2.530777    6.476801    1
1.296683    11.607559   0
0.475487    12.040035   0
-0.783277   11.009725   0
0.074798    11.023650   0
-1.337472   0.468339    1
-0.102781   13.763651   0
-0.147324   2.874846    1
0.518389    9.887035    0
1.015399    7.571882    0
-1.658086   -0.027255   1
1.319944    2.171228    1
2.056216    5.019981    1
-0.851633   4.375691    1
-1.510047   6.061992    0
-1.076637   -3.181888   1
1.821096    10.283990   0
3.010150    8.401766    1
-1.099458   1.688274    1
-0.834872   -1.733869   1
-0.846637   3.849075    1
1.400102    12.628781   0
1.752842    5.468166    1
0.078557    0.059736    1
0.089392    -0.715300   1
1.825662    12.693808   0
0.197445    9.744638    0
0.126117    0.922311    1
-0.679797   1.220530    1
0.677983    2.556666    1
0.761349    10.693862   0
-2.168791   0.143632    1
1.388610    9.341997    0
0.317029    14.739025   0

2.读取文件

filename= 'logistic.txt'  #文件目录

def loadDataSet():   #读取数据(这里只有两个特征)
    dataMat = []
    labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])   #前面的1,表示方程的常量。比如两个特征X1,X2,共需要三个参数,W1+W2*X1+W3*X2
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

 3.求出回归参数并画出决策边界

def gradAscent(dataMat, labelMat): #梯度上升求最优参数
    dataMatrix=mat(dataMat) #将读取的数据转换为矩阵
    classLabels=mat(labelMat).transpose() #将读取的数据转换为矩阵
    m,n = shape(dataMatrix)
    alpha = 0.001  #设置梯度的阀值,该值越大梯度上升幅度越大
    maxCycles = 500 #设置迭代的次数,一般看实际数据进行设定,有些可能200次就够了
    weights = ones((n,1)) #设置初始的参数,并都赋默认值为1。注意这里权重以矩阵形式表示三个参数。
    for k in range(maxCycles):
        h = sigmoid(dataMatrix*weights)
        error = (classLabels - h)     #求导后差值
        weights = weights + alpha * dataMatrix.transpose()* error #迭代更新权重
    return weights

def log1():
    dataMat, labelMat = loadDataSet()
    weights=gradAscent(dataMat, labelMat).getA()
    plotBestFit(weights)
    weights = gradAscent(dataMat, labelMat)
    print("w0: %f, w1: %f, W2: %f" % (weights[0],weights[1], weights[2]))


if __name__=='__main__':
    log1()

 

 

 4.随机梯度上升

def stocGradAscent0(dataMat, labelMat):  #随机梯度上升,当数据量比较大时,每次迭代都选择全量数据进行计算,计算量会非常大。所以采用每次迭代中一次只选择其中的一行数据进行更新权重。
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    alpha=0.01
    maxCycles = 500
    weights=ones((n,1))
    for k in range(maxCycles):
        for i in range(m): #遍历计算每一行
            h = sigmoid(sum(dataMatrix[i] * weights))
            error = classLabels[i] - h
            weights = weights + alpha * error * dataMatrix[i].transpose()
    return weights

def log2():
    dataMat, labelMat = loadDataSet()
    weights=stocGradAscent0(dataMat, labelMat).getA()
    plotBestFit(weights)
    weights = stocGradAscent0(dataMat, labelMat)
    print("w0: %f, w1: %f, W2: %f" % (weights[0],weights[1], weights[2]))

 

 5.改进版随机梯度上升

def stocGradAscent1(dataMat, labelMat): #改进版随机梯度上升,在每次迭代中随机选择样本来更新权重,并且随迭代次数增加,权重变化越小。
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    weights=ones((n,1))
    maxCycles=500
    for j in range(maxCycles): #迭代
        dataIndex=[i for i in range(m)]
        for i in range(m): #随机遍历每一行
            alpha=4/(1+j+i)+0.0001  #随迭代次数增加,权重变化越小。
            randIndex=int(random.uniform(0,len(dataIndex)))  #随机抽样
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex].transpose()
            del(dataIndex[randIndex]) #去除已经抽取的样本
    return weights

def log3():
    dataMat, labelMat = loadDataSet()
    weights=stocGradAscent1(dataMat, labelMat).getA()
    plotBestFit(weights)
    weights = stocGradAscent1(dataMat, labelMat)
    print("w0: %f, w1: %f, W2: %f" % (weights[0],weights[1], weights[2]))

 

 

6.完整代码

from numpy import *
filename= 'logistic.txt'  #文件目录

def loadDataSet():   #读取数据(这里只有两个特征)
    dataMat = []
    labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])   #前面的1,表示方程的常量。比如两个特征X1,X2,共需要三个参数,W1+W2*X1+W3*X2
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):  #sigmoid函数
    return 1.0/(1+exp(-inX))

def gradAscent(dataMat, labelMat): #梯度上升求最优参数
    dataMatrix=mat(dataMat) #将读取的数据转换为矩阵
    classLabels=mat(labelMat).transpose() #将读取的数据转换为矩阵
    m,n = shape(dataMatrix)
    alpha = 0.001  #设置梯度的阀值,该值越大梯度上升幅度越大
    maxCycles = 500 #设置迭代的次数,一般看实际数据进行设定,有些可能200次就够了
    weights = ones((n,1)) #设置初始的参数,并都赋默认值为1。注意这里权重以矩阵形式表示三个参数。
    for k in range(maxCycles):
        h = sigmoid(dataMatrix*weights)
        error = (classLabels - h)     #求导后差值
        weights = weights + alpha * dataMatrix.transpose()* error #迭代更新权重
    return weights

def stocGradAscent0(dataMat, labelMat):  #随机梯度上升,当数据量比较大时,每次迭代都选择全量数据进行计算,计算量会非常大。所以采用每次迭代中一次只选择其中的一行数据进行更新权重。
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    alpha=0.01
    maxCycles = 500
    weights=ones((n,1))
    for k in range(maxCycles):
        for i in range(m): #遍历计算每一行
            h = sigmoid(sum(dataMatrix[i] * weights))
            error = classLabels[i] - h
            weights = weights + alpha * error * dataMatrix[i].transpose()
    return weights

def stocGradAscent1(dataMat, labelMat): #改进版随机梯度上升,在每次迭代中随机选择样本来更新权重,并且随迭代次数增加,权重变化越小。
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    weights=ones((n,1))
    maxCycles=500
    for j in range(maxCycles): #迭代
        dataIndex=[i for i in range(m)]
        for i in range(m): #随机遍历每一行
            alpha=4/(1+j+i)+0.0001  #随迭代次数增加,权重变化越小。
            randIndex=int(random.uniform(0,len(dataIndex)))  #随机抽样
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex].transpose()
            del(dataIndex[randIndex]) #去除已经抽取的样本
    return weights

def plotBestFit(weights):  #画出最终分类的图
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='green', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='yellow')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

def log1():
    dataMat, labelMat = loadDataSet()
    weights=gradAscent(dataMat, labelMat).getA()
    plotBestFit(weights)
    weights = gradAscent(dataMat, labelMat)
    print("w0: %f, w1: %f, W2: %f" % (weights[0],weights[1], weights[2]))

def log2():
    dataMat, labelMat = loadDataSet()
    weights=stocGradAscent0(dataMat, labelMat).getA()
    plotBestFit(weights)
    weights = stocGradAscent0(dataMat, labelMat)
    print("w0: %f, w1: %f, W2: %f" % (weights[0],weights[1], weights[2]))

def log3():
    dataMat, labelMat = loadDataSet()
    weights = stocGradAscent1(dataMat, labelMat)
    print("w0: %f, w1: %f, W2: %f" % (weights[0], weights[1], weights[2]))
    weights=stocGradAscent1(dataMat, labelMat).getA()
    plotBestFit(weights)


if __name__=='__main__':
    #log1()
    #log2()
    log3()

 四、总结

1.Logistic回归的主要用途 

(1)寻找危险因素:寻找某一疾病的危险因素等;

(2)预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;

(3)判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。

2.当模型效果不理想的时候,可调整的策略有

(1)调节正负样本的权重参数。

(2)更换模型算法。

(3)同时几个使用模型进行预测,然后取去测的最终结果。

(4)使用原数据,生成新特征。

(5)调整模型参数

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值