机器学习之logistic回归

@(机器学习)[回归]
#logistic回归
在**《机器学习之线性回归模型》一章中,我们学习了如何使用线性模型进行回归学习。如果要将线性模型用来分类,就要用到该章结尾介绍的广义线性模型了。
logistic回归模型采用logistic函数来将线性回归产生的预测值 z = w T x + b z=\boldsymbol{w}^T\boldsymbol{x}+b z=wTx+b转化为一个接近0或1的 y y y值;
y = 1 1 + e − z (1) y=\frac{1}{1+e^{-z}} \tag{1} y=1+ez1(1)
由此得到logistic回归模型:
y = 1 1 + e − ( w T x + b ) (2) y=\frac{1}{1+e^{-(\boldsymbol{w}^T\boldsymbol{x}+b)}} \tag{2} y=1+e(wTx+b)1(2)
假设我们的训练集是由 m m m个已标记的样本构成: { ( x ( 1 ) , y ( 1 ) ) , ⋯   , ( x ( m ) , y ( m ) ) , } \{(x^{(1)},y^{(1)}),\cdots,(x^{(m)},y^{(m)}),\} {(x(1),y(1)),,(x(m),y(m)),},输入特征向量 x ( i ) ∈ R n + 1 \boldsymbol{x}^{(i)}\in \mathbb{R}^{n+1} x(i)Rn+1。(我们约定其中 x 0 = 1 对 应 截 距 项 x_0=1对应截距项 x0=1)。
我们将用于分类的函数称为
假设函数**(hypothesis function),logistic回归中的假设函数为:
h θ = 1 1 + e ( − θ T x ) (3) h_\theta=\frac{1}{1+e^{(-\theta^Tx)}} \tag{3} hθ=1+e(θTx)1(3)
注意, ( 3 ) (3) (3)中的 θ \theta θ等价于 [ w ; b ] [w;b] [w;b]
我们可以通过“极大似然法”(maximum likelihood method)来估计 θ \theta θ。不妨设:
P ( y = 1 ∣ x ; θ ) = h θ ( x ) P ( y = 0 ∣ x ; θ ) = 1 − h θ ( x ) (4) \begin{aligned} P(y=1|x;\theta) &=h_\theta(x) \\ P(y=0|x;\theta) &=1-h_\theta(x) \\ \tag{4} \end{aligned} P(y=1x;θ)P(y=0x;θ)=hθ(x)=1hθ(x)(4)
那么有
P ( y ∣ x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y (5) P(y|x;\theta)=(h_\theta(x))^y(1-h_\theta(x))^{1-y} \tag{5} P(yx;θ)=(hθ(x))y(1hθ(x))1y(5)
似然函数为:
L ( θ ) = P ( Y ∣ X ; θ ) = ∏ i = 1 m P ( y ( i ) ∣ x ( i ) ; θ ) = ∏ i = 1 m ( h θ ( x ( i ) ) ) y ( i ) ( 1 − h θ ( x ( i ) ) ) 1 − y ( i ) (6) \begin{aligned} L(\theta) &=P(\boldsymbol{Y}|\boldsymbol{X};\theta) \\ &=\prod_{i=1}^{m}P(y^{(i)}|x^{(i)};\theta) \\ &=\prod_{i=1}^{m}(h_\theta(x^{(i)}))^{y^{(i)}}(1-h_\theta(x^{(i)}))^{1-y^{(i)}}\\ \tag{6} \end{aligned} L(θ)=P(YX;θ)=i=1mP(y(i)x(i);θ)=i=1m(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)(6)
对数似然函数为:
l ( θ ) = log ⁡ L ( θ ) = ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) (7) \begin{aligned} l(\theta) &=\log L(\theta) \\ &=\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)})+(1-y^{(i)})\log (1-h_\theta(x^{(i)}))\\ \tag{7} \end{aligned} l(θ)=logL(θ)=i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))(7)
我们将训练模型参数 θ \theta θ使其能够最小化代价函数:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] (8) J(\theta)=-\frac{1}{m}\left[\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)})+(1-y^{(i)})\log (1-h_\theta(x^{(i)}))\right] \tag{8} J(θ)=m1[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))](8)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值