卷积神经网络入门

1. 计算机视觉(Computer Vision)领域介绍 2. 卷积运算 2.1. 一维场合 2.2. 二维场合 3. 卷积操作的作用和优点 3.1. 参数共享和连接的稀疏性 3.2. 平移不变性 3.2. 边缘检测 4. Padding(填充) 5. Strided Conv...

2018-06-28 22:30:55

阅读数 59

评论数 0

神经网络之将二分类问题推广到多分类问题

1. Softmax回归详解 将神经网络应用到多类分类问题中时,输出层的形式不能用logistic函数(sigmoid激活函数),而应该推广到softmax函数。二分类问题与多分类问题的神经网络模型的最大区别就是输出层。因此下面重点讲解softmax函数的原理。 1. So...

2018-06-25 16:03:52

阅读数 1658

评论数 0

创建机器学习项目的注意事项

1. Orthogonalization(正交化) 2. 使用单一的量化评价指标 2.1. 状态与决策 2.2. 状态与决策的组合 2.3. 评价指标 2.3. 关于train/dec/test set 2.4. 与人类表现比较 3. 错误分析 4. train set和dev/te...

2018-06-25 14:48:31

阅读数 85

评论数 0

Batch normalization(批量标准化)

[TOC] 简要概括:对每层的激活函数都进行标准化。可以对z[l]z[l]z^{[l]}或者a[l]a[l]a^{[l]}进行标准化,其中前者更常见。 1. Batch normalization原理 对于神经网络中的某些中间值z[l](i),i=1,2,⋯,mz[l](i),i=1...

2018-06-17 23:29:53

阅读数 894

评论数 0

神经网络中的正则化

1. Logistic regression 2. Neural network “Frobenius norm” 3. inverted dropout Adding regularization will often help To prevent overfitting...

2018-06-15 22:23:32

阅读数 67

评论数 0

神经网络中的优化方法

1. Mini-batch decent方法 1.1. Batch vs. mini-batch 1.2. Choosing mini-batch size 2. 指数加权平均方法(exponentially weighted averages) 2.1. Bias Correcti...

2018-06-15 22:22:31

阅读数 57

评论数 0

神经网络中的激活函数

1. Sigmoid activation function 2. Tanh activation function 3. ReLU and Leaky ReLU 4.选择激活函数的准则 tanh(z)=ez−e−zez+e−ztanh(z)=ez−e−zez+e−ztanh...

2018-06-09 21:12:52

阅读数 651

评论数 0

从logistic回归到神经网络——理论与实践

1.logistic回归详解 2.损失函数的选取 2.1.最大化后验概率与极大似然估计 3.梯度下降方法求解最优的参数www和bbb 3.1.前向传播 3.2.反向传播 4.示例代码 1.logistic回归详解 logistic回归模型是用来解决二分类问题的,因此...

2018-06-06 11:59:43

阅读数 173

评论数 0

RNN教程

@(深度学习)[神经网络, RNN]RNN教程RNN教程 Introduction to RNN Introduction to LSTM LSTM VariantsIntroduction to RNN在传统的前馈神经网络中,我们假定所有的输入(和输出)相互之间都是独立的。因此,前馈神经网络不能...

2018-02-02 22:08:25

阅读数 213

评论数 0

Windows下利用Anaconda安装多个版本的TensorFlow

Windows下利用Anaconda安装多个版本的TensorFlowWindows下利用Anaconda安装多个版本的TensorFlow 手把手安装流程 关于新环境下Spyder打不开的问题解决方案由于TensorFlow版本众多,不同版本之间差异比较大,有时我们需要在自己的电脑上安装多个版本...

2018-01-26 16:00:21

阅读数 3560

评论数 1

TensorFlow之flags用法

TensorFlow命令行参数之flags用法

2017-11-09 18:04:59

阅读数 202

评论数 0

链表带环的问题研究及代码实现

链表带环的问题研究及代码实现[TOC] 注:如无特别说明,本文中的链表均含有附加表头结点first1. 如何判断链表是否有环?思路是让两个指针slow和fast同时从链表头出发遍历链表,fast的速度是slow的两倍(为简单起见我们可以让slow每次走一个节点,fast每次走两个节点),若slo...

2017-09-03 00:24:08

阅读数 266

评论数 0

机器学习之感知机与SVM详细推导

感知机与SVM详细推导

2017-07-28 01:10:50

阅读数 1664

评论数 0

机器学习之softmax回归

@(机器学习)[回归]Softmax回归详解在softmax回归中,我们解决的是多分类问题(相对于logistic回归解决的二分类问题),标记yy可以取kk个不同的值。对于训练集{(x(1),y(1)),⋯,(x(m),y(m))}\{(x^{(1)},y^{(1)}),\cdots,(x^{(m...

2017-06-29 21:18:07

阅读数 204

评论数 0

机器学习之logistic回归

@(机器学习)[回归]logistic回归在《机器学习中的线性回归模型》一章中,我们学习了如何使用线性模型进行回归学习。如果要将线性模型用来分类,就要用到该章结尾介绍的广义线性模型了。 logistic回归模型采用logistic函数来将线性回归产生的预测值z=wTx+bz=\boldsymbo...

2017-06-28 00:30:12

阅读数 258

评论数 0

机器学习之线性回归模型

@(机器学习)[回归]线性回归模型(本章内容是后续logistic回归和softmax回归的基础) 给定数据集D={(x1,y1),(x2,y2),…,(xm,ym)}D=\{(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\dots ,(\mathbf{x}_m,y...

2017-06-27 23:20:01

阅读数 176

评论数 0

参数估计之最大似然估计

参数估计之最大似然估计(此文为后续学习softmax函数等内容提供基础) 基本思路:对于离散总体,设有样本观测值x1,x2,⋯,xnx_1,x_2,\cdots ,x_n,我们写出该观测值出现的概率,它一般依赖于某个或某些参数,用θ\theta表示,将该概率看成θ\theta的函数,用L(θ)L...

2017-06-27 11:34:26

阅读数 333

评论数 0

卷积神经网络基础教程

卷积神经网络基础教程卷积神经网络是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。卷积神经网络是一种专门用来处理具有类似网格结构的数据的神经网络,例如时间序列(可以认为是在时间轴上有规律地采样形成的一维网格)和图像数据(可以看作是二维的像素网格)。卷积运算一维场合卷积的一个...

2017-06-05 12:06:05

阅读数 922

评论数 0

lankuohsing的CSDN博客开张大吉

各位网友好,我是一名在读硕士生,业余对深度学习感兴趣。从2017年6月份开始,我将不定期将自己学习深度学习的笔记发布到我的CSDNlankuohsing的CSDN博客博客上。博客内容主要来自我学习其他深度学习材料的笔记,仅供学习交流,如果无意中侵犯了您的版权还望及时告知。此外,我也可能会发布其他领...

2017-06-04 20:55:23

阅读数 153

评论数 0

前馈神经网络基础教程

深度学习之前馈神经网络基础教程

2017-06-04 12:27:26

阅读数 668

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭