第2章
point1
练习题2.49:对于一种具有n位小数的浮点格式,给出不能准确描述的最小正整数的公式(因为想要准确表示它可能需要n+1位小数)。假设阶码字段长度k足够大,可以表示的阶码范围不会限制这个问题。
思路:整数的二进制表示的低位,和浮点表示的小数部分的高位是匹配的,可以通过移位来得到浮点表示的小数部分。
因为要求的是正整数的表示,因此可以排除非规格化的数值范围,因为这些值全部都小于1。在考虑规格化的数值范围里,倘若需要n+1位小数表示,并且是最小的小数的话,则应该是由n个0和最低位的1个1组成。也就是此时的尾数M = 1 + f = 1 + 2-n-1,由公式V=2E*M,使用阶码抵消掉小数位,则取阶码为2n+1,因此得到值为2n+1+1,即为n位浮点格式不能准确描述的最小正整数。
结合例子理解一下
实际上尾数决定了浮点数的精度,尾数只有23位,加上省略的小数点前的那位就是24位。如果一个int类型的值小于224,那么float是完全可以表示的。如果int类型大于224就不一定能表示了。如一个int数值的二进制表示形式是1000 0000 0000 0000 0000 0000,表示成指数形式是1.0000 0000 0000 0000 0000 000 * 223,对应的float的类型,尾数位全部为0,指数位是23+127=150,这样完全没有问题。假如一个int数值的二进制表示形式是10000 0000 0000 0000 0000 0001,表示成指数形式是1.0000 0000 0000 0000 0000 0001*224,对应的float的类型尾数位是0000 0000 0000 0000 0000 0001一共24位,这样就完全超出了float最多容纳23位尾数的能力。所以就不能正确表达这个int值了。由此也可以得出不能被float准确表达的最小int值是224+1。我们再将1 0000 0000 0000 0000 0000 0001的值加1,变成了1 0000 0000 0000 0000 0000 0010,这样变换为指数形式可以看出尾数又变为了23位,也就是说25位的二进制整数最后一位是0才能被float准确表示,每2个数就有一个不能被准确表示。如果是26位的二进制整数最后两位都是0才可以被float准确表达,每4个数就有3个不能被准确表示,以此类推。