Data Wrangling

数据整理(Data Wrangling)

数据整理(Data Wrangling)可归纳为以下三步:
- 数据收集(Gather)
- 数据评估(Assess)
- 数据清理(Clean)

数据收集(Gather)

收集数据的方式有很多,最简单、最常见的是下载现成的数据。比如从kaggle上下载数据集。

但为了可扩展性(Scalability)和重复性(Reproducibility),有时需要以编程的(Programmatically)方式下载。比如需要下载的文件量较大,有成百上千个,甚至位于不同页面。

从网上爬取数据。比如爬知乎,爬豆瓣。

从各种API获得数据。比如电影数据API,股票数据API,Twitter数据API,等等。

数据评估(Assess)

可以从两方面进行:质量(Quality),整洁度(Tidiness)

质量(Quality)

低质量数据常被称为脏数据(dirty data),比如:
- 数据丢失,缺值。
- 数据无效。
- 数据不准确。
- 数据不一致,比如使用不同的长度单位(英寸和厘米)。

整洁度(Tidiness)

不整洁数据常被称为杂乱数据(messy data),是统计学家、教授和全能数据专家 Hadley Wickham 提出的概念。

A dataset is messy or tidy depending on how rows, columns, and tables are matched up with observations, variables, and types. In tidy data:

  • Each variable forms a column.
  • Each observation forms a row.
  • Each type of observational unit forms a table.

数据清理(Clean)

分为手工清理和程序清理。

程序清理:

  • Define: convert our assessments into defined cleaning tasks. These definitions also serve as an instruction list so others (or yourself in the future) can look at your work and reproduce it.
  • Code: convert those definitions to code and run that code.
  • Test: test your dataset, visually or with code, to make sure your cleaning operations worked.

Always make copies of the original pieces of data before cleaning!

Reassess and Iterate

  • After cleaning, always reassess and iterate on any of the data wrangling steps if necessary.

Store (Optional)

  • Store data, in a file or database for example, if you need to use it in the future.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值