1.把导数理解定义为f(x)dy/dx即因变量的增量与自变量的增量的比值,由除法的定义知道,即每个单位的自变量的增量的所对应的因变量的增量是多少。
如何理解定积分:
一定要把定积分理解为:
为什么定积分会和面积联系在一起???
因为:每一个自变量区间内的自变量的改变量与某一函数值的乘积且正好为该小矩形区域的面积所以无穷多个小矩形面积之积,即构成了f(x)覆盖下的面积。
定积分是对一个导函数进行的操作,因此定积分求得的是该导函数的原函数在区间【a,b】上的总的增量是多少或改变量是多少。
对一个函数定积分就是求以该函数为导函数的函数在某一区间上的微分,即改变量。
导函数只能反映出:在每一点处的因变量相对于该处的自变量的改变量或称为:变化率。
因此,我们得出结论:
不定积分是原函数。
定积分是原函数在某一区间内的增量或称改变量。