R语言机器学习算法实战系列(八)逻辑回归算法分类器 (logistic regression)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

逻辑回归分类算法的原理是基于概率的,它通过估计一个给定输入样本属于某个类别的概率来进行分类。下面是逻辑回归算法的原理和步骤:

在这里插入图片描述

原理:

  1. 线性假设:逻辑回归假设特征和输出之间存在线性关系。对于二分类问题,我们想要预测的是一个概率值,即样本属于某个类别的概率。
  2. Sigmoid函数:为了将线性回归的输出转换为概率值(一个介于0和1之间的值),逻辑回归使用Sigmoid函数。
  3. 对数几率(Log-odds):Sigmoid函数的输入是对数几率,即特征的线性组合。对数几率表示的是特征和类别标签之间的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值