禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

介绍
逻辑回归分类算法的原理是基于概率的,它通过估计一个给定输入样本属于某个类别的概率来进行分类。下面是逻辑回归算法的原理和步骤:

原理:
- 线性假设:逻辑回归假设特征和输出之间存在线性关系。对于二分类问题,我们想要预测的是一个概率值,即样本属于某个类别的概率。
- Sigmoid函数:为了将线性回归的输出转换为概率值(一个介于0和1之间的值),逻辑回归使用Sigmoid函数。
- 对数几率(Log-odds):Sigmoid函数的输入是对数几率,即特征的线性组合。对数几率表示的是特征和类别标签之间的