给一个元素判断在不在幂集里
属于有两种情况:∈\in∈和⊂\subset⊂。
第一个是元素的属于,第二个是集合的属于。
如果是{a}∈A\{a\}\in A{a}∈A就直接在A里找{a}看看能不能找到。
如果是{a}⊂A\{a\}\subset A{a}⊂A就把a的大括号去掉,在A里找a
空集比较特殊,它既是集合又是元素,但是没有括号。所以空集看成{ }就可以了。
比如:{∅}∈{∅}\{\empty\}\in\{\empty\}{∅}∈{∅},直接在后一个括号里的找前一个,找不到,所以错。但是{∅}∈{∅,{∅}}\{\empty\}\in\{\empty,\{\empty\}\}{∅}∈{∅,{∅}}是对的,因为找的到。
{∅}⊂{∅}\{\empty\}\subset\{\empty\}{∅}⊂{∅},第一个是集合,去掉括号,在后一个里面,所以对。
∅∈{∅}\empty\in\{\empty\}∅∈{∅}对
∅⊂{∅}\empty\subset\{\empty\}∅⊂{∅}也对,因为空集是任何集合子集。
也可以这样想,空集是{},去掉括号就是啥也没有,确实在后一个中。
给一个集合,判断是不是power set
先看个数是不是2n2^n2n,是的话再接着看。
power set是子集的集合,所以去掉括号就是子集。
比如P(A)={{a},{b},{a,b},∅}P(A)=\{\{a\},\{b\},\{a,b\},\empty\}P(A)={{a},{b},{a,b},∅} 去掉括号就是子集{a},{b}.{a,b},空集,然后看看是不是一个集合的子集。
注意{∅}\{\empty\}{∅}的powerset 元素两个,{{∅},∅}\{\{\empty\},\empty\}{{∅},∅}
空集的powerset 元素一个{∅}\{\empty\}{∅}