数学分析
HGGshiwo
这个作者很懒,什么都没留下…
展开
-
华师大版数学分析下知识点总结
由于要小测考试之类的,我就总结了相关知识点和一些解题方法。如果有同学也用这本教材的,我们可以交流交流。16章多元函数的极限与连续平面点集和多元函数二元函数的极限二元函数的连续性17章多元函数微分学可微性复合函数微分法方向导数和梯度泰勒公式和极值...原创 2020-05-11 10:33:22 · 5179 阅读 · 2 评论 -
数分下例题
幂级数收敛幂级数收敛求收敛半径一般是limn→∞an+1an=p,r=1p\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_{n}}=p,r=\frac{1}{p}n→∞limanan+1=p,r=p1或者开n次以后求极限。但是对于抽象幂级数,可能先凑出一个半径,然后用幂级数性质说明x=1的时候条件收敛,若x>1也收敛,则阿贝尔定理可知,x=1处绝对收敛,矛盾第二题看起来用求和函数的方法可以处理,但是最后还是无法下手。应该运用逐项求导,收敛区间不原创 2020-11-15 11:14:41 · 2317 阅读 · 1 评论 -
数分考前总结
数项级数:级数收敛的定义:部分和数列收敛柯西收敛准则:任给正数ϵ\epsilonϵ,存在正整数NNN,使得m>Nm>Nm>N时对于任意正整数ppp,∣um+...um+p∣<ϵ|u_{m}+...u_{m+p}|<\epsilon∣um+...um+p∣<ϵ级数收敛的必要条件:limn→∞un=0\lim\limits_{n\to\infty}u_n=0n→∞limun=0收敛级数的性质级数收敛满足线性性去掉,增加,改变有限个项不影原创 2020-08-04 10:42:12 · 2298 阅读 · 0 评论 -
积分关系
原创 2020-07-08 09:24:46 · 442 阅读 · 0 评论 -
隐函数知识点总结
对于F(x,y)=0可以有一个函数关系:y=f(x)则称F(x,y)=0确定了一个隐函数。也可写作F(x,f(x))=0就是说只要有函数关系就行,能不能具体写出表达式没有考虑。隐函数存在定理(充分条件):F(x,y)在区域上连续,且Fy(x,y)F_y(x,y)Fy(x,y)连续,Fy(x0,y0)≠0F_y(x_0,y_0)\not=0Fy(x0,y0)=0,F(x0,y0)=0F(x_0,y_0)=0F(x0,y0)=0,那么F(x,y)=0确定了一个隐函数,且隐函数连续。如原创 2020-05-11 21:48:02 · 13599 阅读 · 1 评论 -
反常积分p幂判别法p的选取
一般遇到不能放缩的反常积分,就要用p幂判别法,但是p不好选。如果遇到带参数的更加头疼。我总结了一下相关的方法。1.确定瑕积分的瑕点这个很重要,有些看起来是瑕点实际上不是,有些实际上是看起来不是。贼鸡儿难受。2.对式子进行处理比如加个绝对值,sinxsinxsinx可以放成111或者∣sinx∣|sinx|∣sinx∣放成sin2xsin^2xsin2x3.待定系数法乘上xpx^{p}...原创 2020-03-30 17:07:51 · 8837 阅读 · 0 评论 -
数项级数收敛判别
书上没有考虑数列的收敛,可能是太简单了。。。数项级数判别法知识点较多,总结如下柯西收敛准则必要条件无穷远处是考虑发散可能会用到这个正项级数1.部分和数列有界,抽象数列较为常见2.第一比较判别法,un<vnu_{n}<v_{n}un<vn3.第二比较判别法,unnpu_{n}n^punnp或者qnunq^nu_{n}qnun,nnn无穷大时候的情况(与p幂法...原创 2020-03-30 22:00:12 · 2713 阅读 · 1 评论 -
函数项数列以及函数项级数收敛判别
毫无疑问,这个要记的东西巨多。我总结了一下,以后忘了还能来看。函数项数列的收敛主要就是求极限函数,注意一定要先求。做题也要看清是数列收敛函数级数收敛。点态收敛这个就是一致收敛的普通情况,在某一个点收敛。给定xxx,在nnn趋于无穷时∣fn(x)−f(x)∣<e|f_{n}(x)-f(x)|<e∣fn(x)−f(x)∣<e.一致收敛这个判定比较复杂1.定义:对所有...原创 2020-03-31 09:36:27 · 6649 阅读 · 0 评论 -
四个收敛的关系:一致收敛,点态收敛,绝对收敛,条件收敛
一致收敛与点态收敛这两个概念有点难理解。其实一致收敛简单来说就是,fn(x)f_n(x)fn(x)不管x取什么都能收敛到f(x)f(x)f(x)。这句话的隐含意思是nnn是确定的。也就是说xxx不能随n变化。比如1xn\frac{1}{x^n}xn1,在x很靠近1时,虽然n可以取很大,使其足够接近0,但是固定n以后,显然可以找到一个x使值不接近0可以看出n取很大时,对于每一个n,总有...原创 2020-03-31 17:19:44 · 29699 阅读 · 3 评论 -
幂级数的性质
幂级数这块要记得不是很多,但是还是总结一下。之后我打算再总结一下函数项级数的性质,傅里叶级数,一些计算技巧。首先幂级数不要求级数指数是连续的,只要是升幂就行。幂级数收敛收敛判别没有啥花里胡哨的,就直接收敛半径算一下,得到收敛区间,端点判断一下得到收敛域。1.an+1an=p\frac{a_{n+1}}{a_{n}}=panan+1=p,在n 趋于无穷时。r=1pr=\frac{1}...原创 2020-03-31 19:46:01 · 6859 阅读 · 1 评论 -
Parseval等式和不等式
Parseval等式1π∫−ππ[f(x)]2dx=a022+∑n=1∞(an2+bn2)\frac{1}{\pi}\int_{-\pi}^{\pi}[f(x)]^2dx=\frac{a_{0}^2}{2}+\sum_{n=1}^{\infty}(a^2_{n}+b_{n}^2)π1∫−ππ[f(x)]2dx=2a02+n=1∑∞(an2+bn2)遇到平方积分的时候可以用,遇到求...原创 2020-04-01 21:41:04 · 6272 阅读 · 0 评论 -
傅里叶级数要考的东西
如果周期是2π2\pi2π并且绝对可积,那么可以算傅里叶级数。计算傅里叶级数求之前最好说一句是按段光滑的。1.f(x)=a02+∑(1→∞)(ancos(nx)+bnsin(nx))f(x)=\frac{a_{0}}{2}+\sum(1\to \infty)(a_{n}\cos(nx)+b_{n}\sin(nx))f(x)=2a0+∑(1→∞)(ancos(nx)+bnsin(n...原创 2020-03-31 22:04:50 · 2369 阅读 · 0 评论 -
平面点集和多元函数知识点总结
内点:存在某领域U(A),U(A)属于E外点:存在某领域U(A),U(A)与E相交为空集界点:任意领域U(A),U(A)和E以及E的补集相交不为空集三种关系类比为区间内,区间外和区间的上下确界内点一定属于E,外点一定不属于E,界点可能属于E聚点定义:(1)任何空心领域中有E中的点(2)任何领域包含E的无数个点内点一定是聚点,外点一定不是界点,界点可能是聚点开集:每一点都是内点闭集:E的聚点都属于E(也即界点都属于E,因为内点一定属于E,但是这个定义好证,只要说明随便一个点是聚点,且满原创 2020-05-08 23:03:27 · 3718 阅读 · 0 评论 -
二元函数极限知识点总结
这个概念少,简单。1.一般来说,可以换元成x=rcos(t)x=r\cos(t)x=rcos(t)和y=rsin(t)y=r\sin(t)y=rsin(t)t趋于0,可以解决大部分的题。2.要是喜欢花里胡哨,可以设y=kx带进去一求极限和k有关,说明极限不存在。3.或者各种不等式x2+y2<(x+y)22x^2+y^2<\frac{(x+y)^2}{2}x2+y2<2(x+y)2权方和不等式x2+y2>2xyx^2+y^2>2xyx2+y2>2xy均值不等原创 2020-05-08 23:46:32 · 4408 阅读 · 3 评论 -
二元函数连续性知识点总结
连续性定义:二元函数f(P)f(P)f(P),对于任意e>0,存在P的邻域U(P0P_0P0,a),只要P属于U(P0P_0P0,a)则∣f(P)−f(P0)∣<e|f(P)-f(P_0)|<e∣f(P)−f(P0)∣<e说明连续p0p_0p0是孤立点,则一定在p0p_0p0连续p0p_0p0是聚点,则等价于函数在PPP->P0P_0P0时极限等于f(p0)f(p_0)f(p0)全增量和偏增量对于x连续和y连续不能说明在(x,y)处连续。复合函数的连续原创 2020-05-10 11:04:35 · 7482 阅读 · 0 评论 -
多元函数可微性知识点总结
这节的知识点也挺多,主要就是可微和偏导数存在的关系偏导数:z=f(x,y),z对x或者y的偏导数就是把另一个当做常数求导,还算简单判断可微性:必要条件:可以写成偏导数都存在,且可以写成dz=fxdx+fydydz=f_xdx+f_ydydz=fxdx+fydyfx,fyf_x,f_yfx,fy表示f对x,y的偏导。所以首先求出关于x和y的偏导,然后算出德尔塔z和全增量之间的差f(x0+dx,y0+dy)−f(x0,y0)−fx(x0,y0)dx−fy(x0,y0)dyf(x_0+dx,y原创 2020-05-10 16:17:38 · 29324 阅读 · 2 评论 -
复合函数微分法知识点总结
一开始看起来复杂,但是实际上再简单不过了。只需要画出变量间的关系图。举个例子:求f(xy,x-y)对于x的偏导画出关系图f1f21-1yxfxyx-yxy最后导数就是fx=(yf1−f2)dx+(−f2+xf1)dyf_x=(yf_1-f_2)dx+(-f_2+xf_1)dyfx=(yf1−f2)dx+(−f2+xf1)dyf1和f2就是f关于第一分量xy和第二分量x-y的导数,如果令u=xy,v=x-y还可以写为fu,fvf_u,f_vfu,fv总而言之,就设把变量的关系写清原创 2020-05-10 16:43:44 · 3801 阅读 · 0 评论 -
方向导数和梯度的知识点总结
这节知识点巨少,欢呼吧!沿l的方向导数:要求可微fl(P0)=fx(P0)cos(a)+fy(P0)cos(b)+fz(P0)cos(c)f_l(P_0)=f_x(P_0)\cos(a)+f_y(P_0)\cos(b)+f_z(P_0)\cos(c)fl(P0)=fx(P0)cos(a)+fy(P0)cos(b)+fz(P0)cos(c)cos是方向余弦,就是cos(a)=xx2+y2+z2\cos(a)=\frac{x}{\sqrt{x^2+y^2+z^2}}cos(a)=x原创 2020-05-10 20:55:02 · 1520 阅读 · 0 评论 -
泰勒公式与极值问题的知识点总结
具体函数求所有二阶偏导数:这个就很烦,一个比较靠谱的方法就是硬算,先求fx,fyf_x,f_yfx,fy,再求fxx,fxy,fyyf_{xx},f_{xy},f_{yy}fxx,fxy,fyy注意了,fxy=fyxf_{xy}=f_{yx}fxy=fyx的条件是累次极限相等,即在该点连续。由于正常情况下没有指出是哪一个点,默认都是连续的,所以两个相等,求的时候只要求3个就行抽象函数求二阶导数,比如f(xy,x-y)先求一阶的,比如fx=yf1+f2f_x=yf_1+f_2fx=y原创 2020-05-10 22:11:46 · 3334 阅读 · 2 评论 -
隐函数组知识点总结
隐函数组就是多了一个式子,本来一个变量,现在两个变量。比如F(x,y,u,v)=0,G(x,y,u,v)=0F(x,y,u,v)=0,G(x,y,u,v)=0F(x,y,u,v)=0,G(x,y,u,v)=0确定了隐函数组u=f(x,y),v=g(x,y)u=f(x,y),v=g(x,y)u=f(x,y),v=g(x,y)这是一个例子而已,变量到底谁是谁的函数还是看题目怎么说的。雅可比行列式∣FuFvGuGv∣\begin{gathered}\begin{vmatrix} F_u& F_原创 2020-05-12 21:58:00 · 5794 阅读 · 0 评论 -
条件极值:拉格朗日数乘法的知识点总结
也是说简单简单,说难难的一节。因为它方法简单,算起来可能会比较难比如要算f(x,y,z)的极值,但是有限制u(x,y,z)=0,v(x,y,z)=0那么构造拉格朗日函数L(x,y,z,a,b)=f+au+bv然后令Lx=0,Ly=0,Lz=0,La=0,Lb=0L_x=0,L_y=0,L_z=0,L_a=0,L_b=0Lx=0,Ly=0,Lz=0,La=0,Lb=0再解出来就是极值了。然后再说:由于这个问题一定有极值,然后解出来就一个极值,说明答案就是它。主要难点:解方程。解出原创 2020-05-13 16:57:04 · 1543 阅读 · 0 评论 -
几何应用知识点总结
这节主要就是背公式就完了。平面曲线F(x,y)=0切线:Fx(x0,y0)(x−x0)+Fy(x0,y0)(y−y0)=0F_x(x_0,y_0)(x-x_0)+F_y(x_0,y_0)(y-y_0)=0Fx(x0,y0)(x−x0)+Fy(x0,y0)(y−y0)=0法线:Fy(x0,y0)(x−x0)−Fx(x0,y0)(y−y0)=0F_y(x_0,y_0)(x-x_0)-F_x(x_0,y_0)(y-y_0)=0Fy(x0,y0)(x−x0)−Fx(x0,y0)原创 2020-05-14 10:51:07 · 546 阅读 · 0 评论 -
二重积分换元法
重积分I=∬Df(x,y)dxdyI=\iint_Df(x,y)dxdyI=∬Df(x,y)dxdy换成x=x(u,v),y=y(u,v)x=x(u,v),y=y(u,v)x=x(u,v),y=y(u,v)以后I=∬D′f(x(u,v),y(u,v))1∣J∣dudvI=\iint_{D'}f(x(u,v),y(u,v))\frac{1}{|J|}dudvI=∬D′f(x(u,v),y(u,v))∣J∣1dudv其中J是J(u,v)雅各比行列式具体是J(u,v)=∣uxuyvxvy∣J(u,v原创 2020-05-20 16:38:23 · 9187 阅读 · 1 评论