数值分析 8.Approximation Theory

1.Discrete Least Squares Approximation

给定点 ( x 1 , y 1 ) , . . . ( x m , y m ) (x_1,y_1),...(x_m,y_m) (x1,y1),...(xm,ym),求 P n ( x ) = a 0 + a 1 x + . . . a n x n P_n(x)=a_0+a_1x+...a_nx^n Pn(x)=a0+a1x+...anxn,使得 E 2 = ∑ k = 1 m [ P n ( x k ) − y k ] 2 E_2=\sum\limits_{k=1}^m[P_n(x_k)-y_k]^2 E2=k=1m[Pn(xk)yk]2最小。

需要E对所有a的导数都为0。

化简的结果为: b i = ∑ i = 1 m x i k , c k = ∑ i = 1 m y i x i k b_i=\sum\limits_{i=1}^mx_i^k,c_k=\sum\limits_{i=1}^my_ix_i^k bi=i=1mxik,ck=i=1myixik

[ b 0 + 0 . . . b 0 + n . . . . . . . . . b n + 0 . . . b n + n ] [ a 0 . . . a n ] = [ c 0 . . . c n ] \begin{bmatrix}b_{0+0}&...&b_{0+n}\\.&.&.\\.&.&.\\.&.&.\\b_{n+0}&...&b_{n+n}\end{bmatrix}\begin{bmatrix}a_0\\ .\\.\\.\\a_n \end{bmatrix}=\begin{bmatrix}c_0\\ .\\.\\.\\c_n \end{bmatrix} b0+0...bn+0.........b0+n...bn+na0...an=c0...cn

可以通过取对数,取倒数再换元的方法将非多项式的函数转化为多项式函数。

如果是想用别的多项式基底表示也可采用:

( f , g ) = ∑ i = 1 m w i f ( x i ) g ( x i ) (f,g)=\sum\limits_{i=1}^{m}w_if(x_i)g(x_i) (f,g)=i=1mwif(xi)g(xi)

( f , g ) = ∫ a b w ( x ) f ( x ) g ( x ) d x (f,g)=\int\limits_{a}^{b}w(x)f(x)g(x)dx (f,g)=abw(x)f(x)g(x)dx

P ( x ) = a 0 ϕ 0 ( x ) + a 1 ϕ 1 ( x ) + . . . a n ϕ n ( x ) P(x)=a_0\phi_0(x)+a_1\phi_1(x)+...a_n\phi_n(x) P(x)=a0ϕ0(x)+a1ϕ1(x)+...anϕn(x)

需要逼近的多项式为 f ( x ) f(x) f(x).

[ ( ϕ 0 , ϕ 0 ) . . . ( ϕ 0 , ϕ n ) . . . . . . . . . ( ϕ n , ϕ 0 ) . . . ( ϕ n , ϕ n ) ] [ a 0 . . . a n ] = [ ( ϕ 0 , f ) . . . ( ϕ n , f ) ] \begin{bmatrix}(\phi_0,\phi_0)&...&(\phi_0,\phi_n)\\.&.&.\\.&.&.\\.&.&.\\(\phi_n,\phi_0)&...&(\phi_n,\phi_n)\end{bmatrix}\begin{bmatrix}a_0\\ .\\.\\.\\a_n \end{bmatrix}=\begin{bmatrix}(\phi_0,f)\\ .\\.\\.\\(\phi_n,f) \end{bmatrix} (ϕ0,ϕ0)...(ϕn,ϕ0).........(ϕ0,ϕn)...(ϕn,ϕn)a0...an=(ϕ0,f)...(ϕn,f)

2.Construction of the orthogonal polynomials

使用斯密特正交化法:

ϕ 0 ( x ) = 1 , ϕ 1 ( x ) = x − B 1 , ϕ k ( x ) = ( x − B k ) ϕ k − 1 − C k ϕ k − 2 \phi_0(x)=1,\\\phi_1(x)=x-B_1,\\ \phi_k(x)=(x-B_k)\phi_{k-1}-C_k\phi_{k-2} ϕ0(x)=1,ϕ1(x)=xB1,ϕk(x)=(xBk)ϕk1Ckϕk2

B k = ( x ϕ k − 1 , ϕ k − 1 ) ( ϕ k − 1 , ϕ k − 1 ) C k = = ( x ϕ k − 1 , ϕ k − 2 ) ( ϕ k − 2 , ϕ k − 2 ) B_k=\frac{(x\phi_{k-1},\phi_{k-1})}{(\phi_{k-1},\phi_{k-1})}\\C_k==\frac{(x\phi_{k-1},\phi_{k-2})}{(\phi_{k-2},\phi_{k-2})} Bk=(ϕk1,ϕk1)(xϕk1,ϕk1)Ck==(ϕk2,ϕk2)(xϕk1,ϕk2)

3.Chebyshev Polynomials

第n个切比雪夫多项式: T n ( x ) = cos ⁡ ( n ⋅ arccos ⁡ x ) T_n(x) = \cos( n ·\arccos x ) Tn(x)=cos(narccosx)

递推公式: T 0 ( x ) = 1 , T 1 ( x ) = x , T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) T_0(x)=1,T_1(x)=x,T_{n+1}(x)=2xT_{n}(x)-T_{n-1}(x) T0(x)=1,T1(x)=x,Tn+1(x)=2xTn(x)Tn1(x)

1.f(x)在[a,b]上的n次插值多项式。

需要n个点构造拉格朗日多项式进行插值,n个点的选取如下:

切比雪夫多项式的零点:

t i = cos ⁡ ( 2 k − 1 2 n π ) , k = 1 , 2 , . . . , n t_i = \cos(\frac{2k-1}{2n}\pi),k=1,2,...,n ti=cos(2n2k1π),k=1,2,...,n

从[-1,1]线性映射到[a,b]

x i = ( b − a ) t + ( a + b ) 2 x_i =\frac{(b-a)t+(a+b)}{2} xi=2(ba)t+(a+b)

使用 x i x_i xi进行线性插值。

2.要求切比雪夫多项式插值结果小于m

切比雪夫多项式的误差为 R n = ∣ f ( n + 1 ) ( ϵ ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) ∣ R_n=|\frac{f^{(n+1)}(\epsilon)}{(n+1)!}\prod\limits_{i=0}^n(x-x_i)| Rn=(n+1)!f(n+1)(ϵ)i=0n(xxi)

在[a,b]上的误差为 R n = M ( n + 1 ) ! ( b − a ) n + 1 R_n=\frac{M}{(n+1)!(b-a)^{n+1}} Rn=(n+1)!(ba)n+1M

M为导数的上确界,找一个较为合适的值。

然后代出n,按照1的方法做。

3.对泰勒公式降阶

P n − 1 ( x ) = P n ( x ) + a n T n − 1 ( x ) 2 n − 1 P_{n-1}(x)=P_{n}(x)+a_n\frac{T_{n-1}(x)}{2^{n-1}} Pn1(x)=Pn(x)+an2n1Tn1(x)

其中 P n ( x ) P_n(x) Pn(x)是n阶泰勒展开, T n ( x ) T_{n}(x) Tn(x)是第n个切比雪夫多项式。 a n a_n an是第n个泰勒展开的系数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值