python数据预处理之将类别数据转换为数值的方法

在进行python数据分析的时候,首先要进行数据预处理。

有时候不得不处理一些非数值类别的数据,嗯, 今天要说的就是面对这些数据该如何处理。

目前了解到的大概有三种方法:

1,通过LabelEncoder来进行快速的转换;

2,通过mapping方式,将类别映射为数值。不过这种方法适用范围有限;

3,通过get_dummies方法来转换。

import pandas as pd
from io import StringIO

csv_data = '''A,B,C,D
1,2,3,4
5,6,,8
0,11,12,'''

df = pd.read_csv(StringIO(csv_data))
print(df)
#统计为空的数目
print(df.isnull().sum())
print(df.values)

#丢弃空的
print(df.dropna())
print('after', df)
from sklearn.preprocessing import Imputer
# axis=0 列  axis = 1 行
imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
imr.fit(df) # fit 构建得到数据
imputed_data = imr.transform(df.values) #transform 将数据进行填充
print(imputed_data)

df = pd.DataFrame([['green', 'M', 10.1, 'class1'],
          ['red', 'L', 13.5, 'class2'],
          ['blue', 'XL', 15.3, 'class1']])
df.columns =['color', 'size', 'price', 'classlabel']
print(df)

size_mapping = {'XL':3, 'L':2, 'M':1}
df['size'] = df['size'].map(size_mapping)
print(df)

## 遍历Series
for idx, label in enumerate(df['classlabel']):
  print(idx, label)

#1, 利用LabelEncoder类快速编码,但此时对color并不适合,
#看起来,好像是有大小的
from sklearn.preprocessing import LabelEncoder
class_le = LabelEncoder()
color_le = LabelEncoder()
df['classlabel'] = class_le.fit_transform(df['classlabel'].values)
#df['color'] = color_le.fit_transform(df['color'].values)
print(df)

#2, 映射字典将类标转换为整数
import numpy as np
class_mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))}
df['classlabel'] = df['classlabel'].map(class_mapping)
print('2,', df)


#3,处理1不适用的
#利用创建一个新的虚拟特征
from sklearn.preprocessing import OneHotEncoder
pf = pd.get_dummies(df[['color']])
df = pd.concat([df, pf], axis=1)
df.drop(['color'], axis=1, inplace=True)
print(df)
### 决策树算法中分类变量转换为数值变量的原因 在决策树算法中,虽然其本身能够处理分类变量数值变量[^2],但在某些情况下仍然需要将分类变量转换为数值形式。这种转换的主要原因是出于计算效率以及特定实现的需求。 #### 原因分析 1. **统一数据格式** 许多编程语言或库(如Python中的`scikit-learn`)要求输入的数据必须是数值类型的矩阵。因此,在实际应用中,为了满足这些工具的要求,分类变量通常会被编码成数值形式[^3]。 2. **便于计算分裂准则** 决策树的核心在于如何选择最优的特征及其阈值来划分样本集。对于连续型变量,可以通过比较大小来进行分割;而对于离散型分类变量,则可能涉及更多的组合方式。如果先将其映射到数字空间,就可以简化这一过程并提高运算速度[^4]。 3. **减少内存占用** 数字化后的表征往往比字符串更节省存储资源,尤其是在高维度或者大规模数据集中这一点尤为重要。 #### 对模型的影响 尽管进行了上述变换操作,但只要方法得当就不会影响最终结果的有效性和准确性: - 如果采用恰当的技术手段比如独热编码(one-hot encoding),那么原始信息基本不会丢失; - 不过需要注意的是不当的选择可能会引入新的偏差甚至误导整个建模流程——例如简单的标签编码(label encoding)可能导致隐含顺序关系被错误解读从而干扰后续判断逻辑[^1]。 ```python import pandas as pd from sklearn.preprocessing import OneHotEncoder, LabelEncoder # 示例数据框 data = {'color': ['red', 'blue', 'green']} df = pd.DataFrame(data) # 使用Label Encoder进行转换 label_encoder = LabelEncoder() df['color_label'] = label_encoder.fit_transform(df['color']) # 使用One-Hot Encoding进行转换 onehot_encoder = OneHotEncoder(sparse=False) encoded_data = onehot_encoder.fit_transform(df[['color']]) df_onehot = pd.DataFrame(encoded_data, columns=onehot_encoder.get_feature_names_out(['color'])) print("Label Encoded DataFrame:") print(df) print("\nOne-Hot Encoded DataFrame:") print(df_onehot) ``` 以上代码展示了两种常见的转换技术:一是直接赋予不同类别整数编号(`LabelEncoding`);二是创建多个二元列分别指示各个水平的存在与否状态(`OneHotEncoding`)。 ### 结论 综上所述,把分类变量转成对应的数值表达主要是为了让计算机更容易理解与处理的同时保持原有特性不变的前提下优化性能表现[^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT界的小小小学生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值