HOJ 1653 Heavy Transportation

Heavy Transportation

My Tags  (Edit)
  Source : TUD Contest 2003, Darmstadt, Germany
  Time limit : 1 sec   Memory limit : 32 M

Submitted : 520, Accepted : 178

Background

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights. Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo’s place) to crossing n (the customer’s place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 ≤ n ≤ 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Output

1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4


题目大意:给定一个无向图,边的权值表示路径所能承受最大重量,问从1到n最多运送多重的货物。

解题思路:

我首先想到的就是最短路径的floyd算法,因为前几天刚做过一道这个的题,详情见hoj 1632,floyd算法就是一个动态规划,只不过最短路径的判断条件要变成:dp[i][j] = max(dp[i][j],min(dp[i][k],dp[k][j]));  但提交发现是超时,因为floyd算法的时间复杂度为n^3。

那么只能用别的方法,其实这题也算是一个最小生成树的问题,只不过还是判断条件有所改变。这里我用的kruskal算法,对边进行排序,然后利用并查集进行搜索。

代码如下:

#include <iostream>
#include <algorithm>
#include <string.h>

using namespace std;
int father[1001];
struct edge
{
    int from;
    int to;
    int weight;
}e[500000];

bool cmp(edge a,edge b)
{
    return a.weight>b.weight;
}

int find_set(int x)
{
    if(father[x]==x)
        return x;
    else
    {
        father[x]=find_set(father[x]);
        return father[x];
    }
}

int main()
{
    int i,j,k,n,m,cnt,x,y,weight,sce;
    int ans;


    cin>>sce;
    for(cnt=1;cnt<=sce;cnt++)
    {
        cin>>n>>m;
        for(i=1;i<=n;i++)//节点序号从1开始
            father[i]=i;
        for(i=0;i<m;i++)
        {
            cin>>x>>y>>weight;
            e[i].from=x;
            e[i].to=y;
            e[i].weight=weight;
        }
        sort(e,e+m,cmp);
        ans = 10000000;
        for(i=0;i<m;i++)
        {
            x = find_set(e[i].from);
            y = find_set(e[i].to);
            if(x != y)
            {
                father[x]=y;
                if(ans>e[i].weight)
                    ans = e[i].weight;
                if(find_set(1) == find_set(n))
                    break;
            }
        }
        cout<<"Scenario #"<<cnt<<":"<<endl<<ans<<endl<<endl;
    }

    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值