Ubuntu22.04换源、Nvidia显卡驱动、CUDA、Anaconda安装

Ubuntu22.04换源、显卡驱动、CUDA、Anaconda

在ubuntu22.04以前,ubuntu内核和nvidia的显卡驱动不兼容,导致显卡驱动的安装经常出问题,包括但不限于:

ubuntu20.04,手动安装完显卡驱动后开机后,开机黑屏幕,只有左上角有一个下环线“-”在闪烁:

  • 解决办法1:按住ctrl+alt+F2~F6之间的任意一个按键,进入到tty模式下(没有图形界面的命令行界面),在里面登入账户名、输入密码,然后卸载Nidia的驱动并重启,先进到图形化界面,然后再想其他办法。
  • 解决办法2:开机进入到bios系统(不同电脑不一样,惠普是开机按住F10),然后将显示模式切换为集成显卡,而不是nvidia显卡,然后重启进入,此时,每次进入系统和关机有一个警告的弹窗,但是能够正常使用,显卡驱动也能够正常使用。不幸的是三天过后,电脑开机就卡在那个弹窗那儿了,多少次重启都没用,只好重装系统(QWQ);

使用ubuntu20.04安装显卡驱动类似的问题还有很多,不一一列举。

在ubuntu20.04之后的版本,比如22.04,对于硬件驱动的兼容性就好很多,甚至不用手动安装了,只需要在软件更新器里面勾选对应版本就可以,非常简单,而且本人试验了两次都没有报错。

因此,下面的教程都是使用22.04LST版本的ubuntu。

1. ubuntu换清华源

sudo gedit /etc/apt/sources.list

将里面的内容全部换为:

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-security main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy-security main restricted universe multiverse

更新一下:

sudo apt-get update
sudo apt-get upgrade

2. 安装显卡驱动程序

看一下自己的显卡有哪些适合的驱动:

ubuntu-drivers devices 

在这里插入图片描述

然后根据推荐的驱动型号,下载驱动:

sudo apt install nvidia-driver-535

此时,在软件更新器中我们可以看到已经安装好的驱动:
在这里插入图片描述
注意! 下载安装完驱动以后,不要直接重启,为了保险起见,先关闭自动更新的选项,以免ubuntu内核更新后和驱动冲突:
在这里插入图片描述

重启电脑:

sudo reboot

检查是否安装成功:(注意cuda的版本,后面要用到)

nvidia-smi

在这里插入图片描述

3. 安装CUDA

官网:cuda官网,选择对应版本,上面那张图的CUDA Version:12.2:
在这里插入图片描述
在这里插入图片描述

wget https://developer.download.nvidia.com/compute/cuda/12.2.2/local_installers/cuda_12.2.2_535.104.05_linux.run
sudo sh cuda_12.2.2_535.104.05_linux.run

在这里插入图片描述

输入accept;
在这里插入图片描述

等待安装完成,配置环境变量,这个步骤会频繁使用,关于环境变量可以看之前的文章详解环境变量 ubuntu环境变量

sudo gedit ~/.bashrc

在文件末尾追加:

export PATH=$PATH:/usr/local/cuda/bin  
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64  
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64

刷新环境变量:

source ~/.bashrc

检查是否成功安装:

nvcc -V

在这里插入图片描述

4. 安装anaconda

安装依赖:

apt install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2 libxss1 libxcursor1 libxcomposite1 libasound2 libxi6 libxtst6

然后在官网anaconda下载安装包,不注册,选择跳过:
在这里插入图片描述

然后开始下载,注意python版本;
在这里插入图片描述

下载完成后,得到一个***.sh文件,安装:

sudo bash ***.sh

一路回车就可以了。安装完成后,添加环境变量:

sudo gedit ~/.bashrc

在末尾添加(注意看一下anaconda的安装路径是不是在主目录,一般都是在主目录):

PATH="~/anaconda3/bin":$PATH

刷新环境变量:

source ~/.bashrc

然后,就可以配置虚拟环境安装pytorch了,可以看之前的链接:pytorch部署pytorch教程

Ubuntu 22.04安装CUDA通常需要额外的步骤,因为Anaconda默认并不包含CUDA工具包。以下是安装CUDA的基本步骤: 1. **更新系统**: ``` sudo apt update && sudo apt upgrade ``` 2. **安装依赖**: CUDA安装需要一些开源软件库支持,可以运行以下命令安装它们: ``` sudo apt install -y build-essential libncurses5-dev libcurl4-openssl-dev libssl-dev zlib1g-dev tk-dev libreadline6-dev libsqlite3-dev libgdbm-dev libffi-dev liblzma-dev libzstd-dev ``` 3. **创建新的Conda环境**: 使用 Anaconda 创建一个新的Python环境,命名为`cuda_env`: ``` conda create -n cuda_env python=3.8 conda activate cuda_env ``` 4. **安装CUDA Toolkit**: 首先访问NVIDIACUDA下载页面(https://www.nvidia.com/cuda-downloads/),找到适用于Ubuntu 22.04CUDA版本,然后下载并解压。接下来,按照官方文档的指示进行安装,这通常涉及到添加CUDA GPG key、配置文件设置等步骤。 5. **安装cuDNN**(如果需要深度学习加速): 同样访问NVIDIA的cuDNN下载页(https://developer.nvidia.com/cudnn),选择对应的Ubuntu版本,并将cuDNN文件放入合适的路径。然后,你需要手动配置环境变量。 6. **验证安装**: 打开终端,输入`nvcc --version`检查CUDA是否成功安装,以及通过相应的Python库如`torch`或`cupy`测试CUDA功能。 请注意,由于CUDACUDA toolkit的版本管理较为复杂,上述过程可能会因CUDA版本的变化而有所差异。如果你遇到问题,建议查阅NVIDIA的最新文档或官方社区寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神奇蔡小花

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值