pytorch——保存,加载模型

本文详细介绍了如何在PyTorch中查看模型结构、获取参数值,保存模型状态,以及如何将参数加载到新网络中。包括使用`state_dict`方法,保存为.pth文件,加载网络权重,并演示了保存其他数值如学习率和训练进度的实例。
摘要由CSDN通过智能技术生成

一文梳理pytorch保存和重载模型参数攻略

查看当前模型结构与参数值

print(model.state_dict)
# 输出定义的网络结构
print(model.state_dict())
# 输出所有参数名和参数值

输出如下:

<bound method Module.state_dict of Digit(
  (conv1): Conv1d(2, 10, kernel_size=(5,), stride=(1,))
  (conv3): Conv1d(5, 20, kernel_size=(3,), stride=(1,))
  (fc6): Linear(in_features=2480, out_features=500, bias=True)
  (drop8): Dropout(p=0.5, inplace=False)
  (fc9): Linear(in_features=500, out_features=1, bias=True)
)>
OrderedDict([('conv1.weight', tensor([[[-0.2759,  0.1526,  0.2299, -0.2617, -0.0128],
         [ 0.2975, -0.1635, -0.1661,  0.1830,  0.1413]],

        [[ 0.0064, -0.1616, -0.2967, <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值