高清修复,细节尽显!告别模糊分辨率的烦恼 !ControlNet tile+SD 教程!

本文介绍了如何通过ControlNet和SD放大算法改善图像质量,详细步骤包括模型选择、参数调整和多次迭代。AIGC技术结合AI绘画和人工智能,预示着未来在游戏和计算领域的广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用ControlNet tile来提升画面的分辨率

首先将需要修复的图粘贴到图生图里(stable diffusion的模型选择完美世界:https://civitai.com/models/8281/perfect-world)

如果是利用文生图画出来的图就直接进行发送,如果不是就一定要记得点击反推提示词

之后将采样步数提升到60

紧接着就是打开ControlNet,点击启用

预处理器以及模型都选择tile

之后点击这个小箭头,将分辨率自动去分配

接着关掉在ControlNet加载的图片

打开脚本里的SD放大算法

选择RealESRGAN_x4plus算法后将重绘幅度调整到0.25

点击生成看看效果

(放大前)

(一次放大后)

看得出来,经过SD的放大算法以及加上ControlNet的tile模型,整体的效果得到很好的提升

可以看到头发、皮肤、饰品上的细节都有很大的提升

如果觉得还不太满意,就可以继续利用图生图,保持其余的参数,修改一下重绘幅度,继续提高画质

(二次放大后)

将所有参数还原,将重绘幅度加大为0.8

通过对比,会发现还原幅度差异较大,会更倾向于关键词

关闭ControlNet的tile模型,看看效果

跟之前的图来对比,是有很大的变化

tile模型是可以将画面进行很有效的稳固作用

那单独使用SD放大算法来看看效果(高宽需要加上64的像素)

细节会更丰富但是会导致一部分的脸会崩坏(如这张图的眼睛)

如果想要更好更高清的图片,就可以利用SD算法加ControlNet的tile模型进行不断的生成,直到出来最满意的效果为止
文章使用的AI绘画SD整合包、各种模型插件、提示词、GPT人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

### 关于ControlNet++ Union SDXL ProMax Safetensors 文件 对于希望获取与ControlNet++ Union SDXL ProMax相关的`safetensors`文件或资源的情况,可以按照如下方法操作: 推荐将模型名称更改为`controlnet-union-sdxl-promax`以便管理和识别[^1]。此命名有助于区分不同版本的模型,在未来的项目维护中提供便利。 具体下载步骤涉及两个主要部分:一是确认所使用的平台已更新到最新版以支持新特性;二是遵循官方指导进行必要的配置调整。例如,在ComfyUI环境中,需先确保软件处于最新状态,并通过其内置插件管理器安装特定扩展组件如“comfyui-art-venture”。之后,依据指引加载相应的工作流文档来简化设置流程[^2]。 针对具体的模型文件——`controlnet-union-sdxl-1.0`,应将其放置于指定路径 `/ComfyUI/models/controlnet/` 下,并考虑重命名为 `controlnet-union-sdxl-1.0.safetensors` 以方便日后追踪和使用。值得注意的是,这里提到的模型实际上是一个多功能集成体,能够兼容多种类型的ControlNet应用需求,包括但不限于Openpose、Depth、Canny等边缘检测算法以及Lineart等多种风格化处理方式[^3]。 如果目标是从单一`.safetensors`文件创建完整的pipeline,则可参照以下Python代码片段实现这一过程。这段脚本展示了如何利用`diffusers`库中的`StableDiffusionXLPipeline`类读取预训练权重文件并初始化GPU加速实例[^4]。 ```python import torch from diffusers import StableDiffusionXLPipeline pretrained_ckpt_path = "path_to_your_controlnet_union_sdxl_promax.safetensors" pipe = StableDiffusionXLPipeline.from_single_file( pretrained_ckpt_path, torch_dtype=torch.float16 ).to("cuda") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值