为目标检测实验设置faster rcnn对照组,希望在原环境下运行,因此选用以前的配置环境。
具体参考这篇文章(博客+代码)具体操作中遇到一些问题,这里记录一下。
1.英文看起来复杂怎么办?
虽然作者使用的都是高中级别的英语词汇,但是一眼看过去还是不如中文舒服啊。没关系,放在谷歌浏览器下打开,直接页面翻译,看起来舒服多了。下面就是按照作者的步骤,按部就班进行就行。
2.配置到2g步,目的是检测你设置的环境是否有效。要是有信心可以直接跳过,要是没把握可以尝试一下。我再尝试时,遇到了这个问题:download model模块一直无法运行完,仔细观察发现,ssd模型已经下载好了,是/object_detection的一个名为ssd_mobilenet_v1_coco_2017_11_17.tar.gz的压缩包,解压缩到本文件夹下,命名为ssd_mobilenet_v1_coco_2017_11_17即可。然后重新进行2g步即可成功检测。
3.配置到第5a步,需要建立你自己的.pbtxt文件,按照要求格式建立一个txt文件,然后重命名改成.pbtxt即可。
4.配置到第5b步,如果你是谷歌浏览器翻译后的文章,请不要直接复制原文语句更改你的.configs文件,因为页面翻译会把标点符号也翻译成中文字符。重新打开英文版原文,复制即可。(话说在这里卡了24小时,检查代码一直报路径错误,检查许久也没有发现问题,真是耽误时间啊!!!)ps:我再这里修改了utils文件夹下label_map_utils.py第132行,tf.gfile.GFile改成open以适应我的tensorflow版本。
5.开始训练,我运行的是train.py,你又会发现一系列问题,缺各种工具包。没关系,缺啥补啥。下面是一些记录。
(1)报错:No module named ‘pycocotools’
解决方法:这里
(2)报错:No module named ‘nets’
解决方法:删除research/slim文件夹下原BUILD文件,在research下分别运行setup.py build和setup.py install,将会在slim文件夹下建立build文件夹,问题即可解决
(3)报错:TypeError: can’t pickle dict_values objects
解决方法:找到model_lib.py文件,第418行category_index.values()改为list(category_index.values()),问题即可解决。
另外,在你的configs中可以修改一些参数,会根据自己的需要开动吧。
https://blog.csdn.net/qq_28888837/article/details/105158678