目录
1. Preliminary: ViT and Cross-Attention
Image Branch:使用Progressive-Sampling ViT(PS-ViT)。
Radiomics Branch:使用vanilla Transformer,但丢弃了位置编码模块。
BYOA模块:包含attention map generation和radiomic feature extraction
1、Supervised Classification Focal Loss
2、Unsupervised Cross-View Contrastive Loss
前言
- 文章来源:TMI2023
- 代码:https://github.com/VITA-Group/chext
- 数据集:NIH ChestXRay dataset
- 关键词:weakly supervised disease localization, radiomics, Transformer
本文提出了一个Radiomics-Guided Transformer(RGT)来融合全局图像信息以及局部radiomics指导的辅助信息,使用Radiomics-Guided进行弱监督胸部X光图像分类和定位任务。
RGT模型的构成:
- image Transformer branck(使用self-attention,来提取一个bbox用于计算radiomic特征)
- radiomics Transformer branch
- fusion layers(通过cross-attention聚合image和radiomics信息)
一、Introduction
手工的放射学特征是为了描述一个局部的“region of interest”,放射学特征由人类设计,并在语义上描述局部医学图像区域。例如具有数字特征的肿瘤,可评估大小、形状、纹理、像素强度变化以及相邻像素之间的关系等。然而,之前的方法需要依赖于准确的病理定位标注。
本文把这个问题称之为“chicken-and-egg”,即存在一个“鸡和蛋”的问题:有用的放射学特征的提取依赖于准确的病理定位,但病理定位往往是不存在的,首先需要学习或单独获取,因此这也是本文创新点的地方,构建一个feedback loop(反馈回路),称之为Bring Your Own Attention (BYOA) module。
二、Method
1. Preliminary: ViT and Cross-Attention
主要是ViT之类的介绍,本文借鉴于CrossViT。
2. RGTModel
本文延用了CrossViT的思想,引入了一个双分支cross-attention Transformer,主分支用来操作图像,辅助分支用来处理放射学特征。

Image Branch:使用Progressive-Sampling ViT(PS-ViT)。
Radiomics Branch:使用vanilla Transformer,但丢弃了位置编码模块。
放射组学分支用于处理和学习放射学特征的深层表示。手工制作的特征可以涵盖广泛的类别,如一阶(基本强度和基于形状的特征)、二阶(从各种矩阵中提取的纹理特征)和更高级的特征,包括通过傅立叶和小波变换计算的特征。具体而言,这项工作中使用的107个放射学特征来自以下描述的类别:
- 一阶统计量测量感兴趣区域内像素强度的分布。这些特征包括能量(像素值大小的测量)、熵(图像值不确定性的测量)和最大/平均/中值灰度强度。总共提取了18个一阶放射组学特征。
- 基于形状的特征:例如mesh surface, pixel surface, and perimeter – describe the two-dimensional size and shape of the region of interest。基于形状的特征对于量化提取区域的大小和纵横比仍然是有用的。这项工作总共使用了14个形状特征。
- 灰度特征描述像素强度值中的统计模式,这些统计模式来自灰度共生矩阵(GLCM)、灰度大小区域矩阵(GLSZM)、灰度游程长度矩阵(GLRLM)、相邻灰度差矩阵(NGTDM)和灰度依赖矩阵(GLDM)。计算了24个GLCM特征、16个GLSZM特征、16种GLRLM特征、5个NGTDM特征和14个GLDM特征。
BYOA模块:包含attention map generation和radiomic feature extraction

- Attention Map Generation:使用self-attention。
- Radiomic Features Extraction: 使用Pyradiomics,包含18 first- order features, 14 shape-based features, and 73 gray-level features。
三、优化方法
1、Supervised Classification Focal Loss
2、Unsupervised Cross-View Contrastive Loss
总的Loss为弱监督:
参考资料:Radiomics Features
医学影像组学特征值(Radiomics Features)提取之Pyradiomics(一)理论篇