一个关于欧拉函数的性质

版权声明:本文为蒟蒻所写,神犇转载尽情拍打喂食虐待,如发现任何的辣鸡错误欢迎吐槽! https://blog.csdn.net/HOWARLI/article/details/51660903

先上公式:

d|nφ(d)=n

证明1

辣鸡证法
f(n)=d|nφ(d)

当n=1时,原始显然成立;

当n为质数时,f(n)=1+(n1)=n,成立;

n=pk(p为质数)时,

f(n)=1+i=0k1pi(p1)

f(n)=1+(p1)i=0k1pi

f(n)=1+(p1)pk1p1

f(n)=pk=n

得证!
又因为φ是积性函数,根据莫比乌斯反演的性质,f也为积性函数,所以原始得证!

证法2

由LYD_7_29提供

设集合

S={1,2,3,4....,n1,n}

再设一个数:d,并且(d|n)
那么S中就有一些数是恰好gcd(xd,n)=d
我们把所有的xd分去一个集合,设为Sd
又因为:gcd(x,nd)=1
所以这个集合中很显然有φ(dn)个,
那么我们在枚举每个d的时候,就会把一些数进行分类,
枚举完以后,每个数都会且仅会被分去一个集合,
所以:
d|nφ(d)=n

得证!

证法3

CTY的高级方法,我不会!

阅读更多
换一批

没有更多推荐了,返回首页