【数论】关于斯特林数

本文仅为涉及与斯特林数有关的公式,本无详细证明;

斯特林数

s ( n , m ) = s ( n − 1 , m − 1 ) + ( n − 1 ) ∗ s ( n − 1 , m ) s(n,m)=s(n-1,m-1)+(n-1)*s(n-1,m) s(n,m)=s(n1,m1)+(n1)s(n1,m)
第一类斯特林数,表示n个可区分元素划分成m个圆排列的方案数。
S ( n , m ) = S ( n − 1 , m − 1 ) + m ∗ S ( n − 1 , m ) S(n,m)=S(n-1,m-1)+m*S(n-1,m) S(n,m)=S(n1,m1)+mS(n1,m)
第二类斯特林数,表示n个可区分元素划分成m个子集的方案数。

相关公式

n m = ∑ k = 0 n S ( m , k ) C n k k ! = ∑ k = 0 n S ( m , k ) n k ‾ n^m=\sum_{k=0}^n S(m,k)C_n^kk! =\sum_{k=0}^n S(m,k)n^{\underline k} nm=k=0nS(m,k)Cnkk!=k=0nS(m,k)nk
∑ i = 1 n i m = ∑ i = 1 n ∑ k = 0 i S ( m , k ) C i k k ! = ∑ k = 0 n S ( m , k ) k ! ∑ i = k n C i k = ∑ k = 0 n S ( m , k ) k ! C n + 1 k + 1 \sum_{i=1}^n i^m=\sum_{i=1}^n\sum_{k=0}^i S(m,k)C_i^kk!=\sum_{k=0}^nS(m,k)k! \sum_{i=k}^nC_i^k=\sum_{k=0}^nS(m,k)k!C_{n+1}^{k+1} i=1nim=i=1nk=0iS(m,k)Cikk!=k=0nS(m,k)k!i=knCik=k=0nS(m,k)k!Cn+1k+1

斯特林反演

f ( n ) = ∑ i = 0 n S ( n , i ) g ( i ) ⟺ g ( n ) = ∑ i = 0 n s ( n , i ) ( − 1 ) n − i f ( i ) f(n)=\sum_{i=0}^nS(n,i)g(i) \Longleftrightarrow g(n)=\sum_{i=0}^ns(n,i)(-1)^{n-i}f(i) f(n)=i=0nS(n,i)g(i)g(n)=i=0ns(n,i)(1)nif(i)

快速求某一行

S ( n , m ) = 1 m ! ∗ ∑ i = 0 m i n C m i ( − 1 ) m − i S(n,m)=\frac{1}{m!}*\sum_{i=0}^m i^n C_m^i (-1)^{m-i} S(n,m)=m!1i=0minCmi(1)mi
显然的这个是一个卷积式。
∏ i = 0 n ( x − i ) \prod_{i=0}^n(x-i) i=0n(xi)
还记得这个吗,第一类斯特林数就是这东西的系数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值