威尔逊定理

威尔逊定理

威尔逊定理是数论四大基本定理之一,而且似乎和群论还有很多奥秘重重的关系。

然而用处不大。

威尔逊定理指的是:
( p − 1 ) ! ≡ − 1        ( m o d    p ) ⇔ p ∈ P (p-1)!\equiv -1\;\;\;(mod\;p)\Leftrightarrow p\in\mathbb{P} (p1)!1(modp)pP
换句话说就是: ( p − 1 ) ! ≡ − 1        ( m o d    p ) (p-1)!\equiv -1\;\;\;(mod\;p) (p1)!1(modp)是p为质数的充分必要条件。

注意 − 1 ≡ p − 1        ( m o d    p ) -1\equiv p-1\;\;\;(mod\;p) 1p1(modp)

威尔逊定理的证明也是奥秘重重:

当p=1,2,3,4时,显然成立。

假设 p > 4 p>4 p>4

若p为合数

p为完全平方数

k = p k=\sqrt p k=p ,由于 4 < p 4<p 4<p,因而 2 < k 2<k 2<k,则 2 k < p 2k<p 2k<p
( p − 1 ) ! = 1 × 2 × . . . × k × . . . × 2 k × . . . × ( p − 2 ) × ( p − 1 ) (p-1)!=1\times2\times...\times k\times...\times 2k\times...\times (p-2)\times(p-1) (p1)!=1×2×...×k×...×2k×...×(p2)×(p1)

则有: ( p − 1 ) ! ≡ X ⋅ 2 ⋅ k 2 ≡ X ′ ⋅ p ≡ 0        ( m o d    p ) (p-1)!\equiv X\cdot2\cdot k^2\equiv X'\cdot p\equiv 0\;\;\;(mod\;p) (p1)!X2k2Xp0(modp)

若p不为完全平方数

( p − 1 ) ! = 1 × 2 × . . . × ( p − 2 ) × ( p − 1 ) (p-1)!=1\times 2\times ...\times (p-2)\times(p-1) (p1)!=1×2×...×(p2)×(p1)
其中必然存在 p p p的一对因子相乘等于 p p p,因此 ( p − 1 ) ! ≡ 0        ( m o d    p ) (p-1)!\equiv 0\;\;\;(mod\;p) (p1)!0(modp)

若p为质数

则集合 S = { 1 , 2 , . . . , p − 2 , p − 1 } S=\{1,2,...,p-2,p-1\} S={1,2,...,p2,p1} p p p的一个既约剩余系。
a ∈ S a\in S aS,根据欧拉定理中的证明, S ′ = { 1 ⋅ a , 2 ⋅ a , . . . , a ⋅ ( p − 2 ) , a ⋅ ( p − 1 ) } S'=\{1\cdot a,2\cdot a,...,a\cdot(p-2),a\cdot(p-1)\} S={1a,2a,...,a(p2),a(p1)}也为 p p p的一个简化剩余系。

新的既约剩余系中必然存在且仅有一个元素u,使得 u ≡ 1        ( m o d    p ) u\equiv 1\;\;\;(mod\; p) u1(modp)

我们断言:对于 x ∈ S , x = 2 , . . . , p − 2 x\in S,x=2,...,p-2 xS,x=2,...,p2,必然一一对应一个互不相同的,并且不等于自身的 a a a,使得 a x ≡ 1 ax\equiv 1 ax1

x = a x=a x=a,则 a x ≡ 1 ax\equiv1 ax1,即 x 2 ≡ 1 x^2\equiv 1 x21,因此 x 2 − 1 ≡ 0 x^2-1\equiv 0 x210,就是 ( x − 1 ) ( x + 1 ) ≡ 0 (x-1)(x+1)\equiv 0 (x1)(x+1)0,此时 x ≡ 1 或 − 1 x\equiv 1或-1 x11。模意义下 − 1 -1 1就是 p − 1 p-1 p1

因而 x ≢ a x\not\equiv a xa
先说不可能有一个 x x x对应多个 a a a,使得 a x ≡ 1 , a ′ x ≡ 1 ax\equiv 1,a'x\equiv 1 ax1,ax1
假设存在两个 a a a,使得 a x ≡ 1 , a ′ x ≡ 1        ( a ≢ a ′ ) ax\equiv 1,a'x\equiv 1\;\;\;(a\not\equiv a') ax1,ax1(aa),则 a x ≡ a ′ x ax\equiv a'x axax,也即 a ≡ a ′ a\equiv a' aa,矛盾。

再说不可能存在一个 a a a对应多个 x x x,同理。

因此 { 2 , 3 , . . . , p − 2 } \{2,3,...,p-2\} {2,3,...,p2}这些数两两配对,乘积均为模意义下1,即: ∏ i = 2 p − 2 i ≡ 1 \overset{p-2}{\underset{i=2}\prod}i\equiv 1 i=2p2i1

此时:
( p − 1 ) ! ≡ 1 × ( ∏ i = 2 p − 2 i ) × ( p − 1 ) ≡ 1 × 1 × ( p − 1 ) ≡ p − 1 ≡ − 1 (p-1)!\equiv1\times\left(\overset{p-2}{\underset{i=2}\prod}i\right)\times(p-1)\equiv1\times1\times(p-1)\equiv p-1\equiv -1 (p1)!1×(i=2p2i)×(p1)1×1×(p1)p11

QED.

例题

威尔逊定理的题挺少的。

题目描述:
S n = ∑ k = 1 n ⌊ ( 3 k + 6 ) ! + 1 3 k + 7 − ⌊ ( 3 k + 6 ) ! 3 x + 7 ⌋ ⌋ S_n=\overset{n}{\underset{k=1}\sum}\left\lfloor{\frac{(3k+6)!+1}{3k+7}-\left\lfloor{\frac{(3k+6)!}{3x+7}}\right\rfloor}\right\rfloor Sn=k=1n3k+7(3k+6)!+13x+7(3k+6)!

目测这个形式很丑,令 x = 3 k + 7 x=3k+7 x=3k+7:
那么枚举上界应该是: k ≤ n k\leq n kn,即 x − 7 3 ≤ n \frac {x-7} 3\leq n 3x7n, x ≤ 3 n + 7 x\leq 3n+7 x3n+7

式子变形为:
= ∑ x = 1 3 n + 7 ⌊ ( x − 1 ) ! + 1 x − ⌊ ( x − 1 ) ! x ⌋ ⌋ =\overset{3n+7}{\underset{x=1}\sum}\left\lfloor{\frac{(x-1)!+1}{x}-\left\lfloor{\frac{(x-1)!}{x}}\right\rfloor}\right\rfloor =x=13n+7x(x1)!+1x(x1)!

很明显括号内是一个描述分式进位的东西,当且仅当 ( x − 1 ) ! + 1 x \frac{(x-1)!+1}{x} x(x1)!+1会使得x进位时,括号内的值为1,否则为0.

(这里说的进位,例如 4 5 = 0 \frac 4 5=0 54=0,如果有 4 + 1 5 = 1 \frac {4+1}5=1 54+1=1,那么就称 5 5 5有进位)

因此我们注意到,当且仅当 ( p − 1 ) ! ≡ p − 1 ≡ − 1        ( m o d    p ) (p-1)!\equiv p-1\equiv -1\;\;\;(mod\;p) (p1)!p11(modp)时,才有进位。

因此处理一下 [ 1 , 3 n + 7 ] [1,3n+7] [1,3n+7]范围内形如 3 k + 7 3k+7 3k+7的质数数量就可以了。

后记

于是皆大欢喜。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值