第三章 数论函数

第三章 数论函数

  • 定义:称 F = { f : Z + → C } \mathcal{F}=\{f:Z^+\rightarrow C\} F={f:Z+C}算术函数数论函数

    • f , g ∈ F f,g\in\mathcal{F} f,gF,则对于 ∀ n ∈ Z ∗ \forall n\in Z^* nZ,有 f = g    ⟺    f ( n ) = g ( n ) f=g\iff f(n)=g(n) f=gf(n)=g(n)
  • 定理一 { F , + } \{F,+\} {F,+} 构成一个群, { F , + , ∗ } \{F,+,* \} {F,+,} 构成一个交换环。其中

    • ( f + g ) ( n ) = f ( n ) + g ( n ) (f+g)(n)=f(n)+g(n) (f+g)(n)=f(n)+g(n)
    • f ⋅ g ( n ) = f ( n ) ⋅ g ( n ) f\cdot g(n)=f(n)\cdot g(n) fg(n)=f(n)g(n)
    • 迪利克雷函数(Dirichlet) f ∗ g ( n ) = ∑ d ∣ n f ( d ) ⋅ g ( n d ) f*g(n)=\sum\limits_{d\mid n} f(d)\cdot g\left(\dfrac{n}{d} \right) fg(n)=dnf(d)g(dn)

3.1 数论函数 ord ⁡ p ( n ) \operatorname{ord}_p(n) ordp(n) v ⁡ p ( n ) \operatorname{v}_p(n) vp(n)

  • 定义:设 p p p 为一个素数,则定义 ord ⁡ p : Z + → Z \operatorname{ord}_p:Z^+\rightarrow Z ordp:Z+Z
    ord ⁡ p ( n ) = r    ⟺    p r ∣ n    且    p r + 1 ∤ n \color{red}\operatorname{ord}_p(n)=r\iff p^r\mid n\;且\; p^{r+1}\not\mid n ordp(n)=rprnpr+1n

    • 性质
      1. ord ⁡ p ( m n ) = ord ⁡ p ( m ) + ord ⁡ p ( n ) \color{red}\operatorname{ord}_p(mn)=\operatorname{ord}_p(m)+\operatorname{ord}_p(n) ordp(mn)=ordp(m)+ordp(n),其中 ∀ m , n ∈ Z + \forall m,n\in Z^+ m,nZ+
      2. ord ⁡ p ( n k ) = k ⋅ ord ⁡ p ( n ) \color{red}\operatorname{ord}_p(n^k)=k\cdot \operatorname{ord}_p(n) ordp(nk)=kordp(n),其中 k > 0 k>0 k>0
  • 定理一:设 p k ≤ n < p k + 1 p^k\le n<p^{k+1} pkn<pk+1,则有
    ord ⁡ p ( n ! ) = ⌊ n p ⌋ + ⌊ n p 2 ⌋ + . . . + ⌊ n p k ⌋ \color{red}\operatorname{ord}_p(n!)=\lfloor \dfrac{n}{p} \rfloor+\lfloor\dfrac{n}{p^2} \rfloor+...+\lfloor\dfrac{n}{p^k} \rfloor ordp(n!)=pn+p2n+...+pkn

  • 定理二:设 0 < r < n 0<r<n 0<r<n,则
    ( n r ) = n ! r ! ( n − r ) ! \binom{n}{r}=\dfrac{n!}{r!(n-r)!} (rn)=r!(nr)!n!
    是一个整数

  • 定理三:设 p p p 为素数, 1 ≤ r < p c , c > 0 1\le r<p^c,c>0 1r<pc,c>0,那么
    ord ⁡ p ( p c r ) = c − ord ⁡ p r \color{red}\operatorname{ord}_p\binom{p^c}{r}=c-\operatorname{ord}_p r ordp(rpc)=cordpr

  • 定理四(Legendre公式):若 n = a 0 + a 1 p + . . . + a k p k n=a_0+a_1p+...+a_kp^k n=a0+a1p+...+akpk,其中 0 ≤ a i < p , a k ≠ 0 0\le a_i<p,a_k\ne 0 0ai<p,ak=0,则设 S p ( n ) = ∑ i = 1 k a i S_p(n)=\sum\limits_{i=1}^k a_i Sp(n)=i=1kai,那么有
    ord ⁡ p ( n ! ) = n − S p ( n ) p − 1 \color{red}\operatorname{ord}_p(n!) = \dfrac{n-S_p(n)}{p-1} ordp(n!)=p1nSp(n)

  • 定理五:设 1 ≤ r < n 1\le r<n 1r<n,则
    ord ⁡ p ( n r ) = S p ( r ) + S p ( n − r ) − S p ( n ) p − 1 \color{red}\operatorname{ord}_p\binom{n}{r}=\dfrac{S_p(r)+S_p(n-r)-S_p(n)}{p-1} ordp(rn)=p1Sp(r)+Sp(nr)Sp(n)

3.2 莫比乌斯函数 Mobius μ ( n ) \mu(n) μ(n)

  • 定义 μ ∈ F \mu\in \mathcal{F} μF 定义为
    μ ( n ) = { 1 , n = 1 ( − 1 ) k , n = p 1 p 2 . . . p k 0 , ∃    p ,    p 2 ∣ n \color{red}\mu(n)=\begin{cases}\begin{aligned} &1,&&n=1\\ &(-1)^k, && n=p_1p_2...p_k\\ &0, && \exist\;p,\;p^2\mid n \end{aligned}\end{cases} μ(n)=1,(1)k,0,n=1n=p1p2...pkp,p2n

  • 定理一:对于 n ≥ 1 n\ge 1 n1,有
    ∑ d ∣ n μ ( d ) = ⌊ 1 n ⌋ \color{red}\sum\limits_{d\mid n}\mu(d)=\lfloor\dfrac{1}{n} \rfloor dnμ(d)=n1

    • 补充:对于欧拉函数,有
      φ ( n ) = ∑ d ∣ n μ ( d ) ⋅ n d \color{red}\varphi(n)=\sum\limits_{d\mid n} \mu(d)\cdot \dfrac{n}{d} φ(n)=dnμ(d)dn
  • 定理二:设 n > 1 n>1 n>1,及 m ≤ w ( n ) m\le w(n) mw(n),则
    ∑ d ∣ n , w ( d ) ≤ m μ ( d ) { ≥ 0 , 2 ∣ m ≤ 0 , 2 ∤ m \sum\limits_{d\mid n,w(d)\le m} \mu(d)\begin{cases}\ge 0,\quad 2\mid m\\ \le 0,\quad 2\not\mid m \end{cases} dn,w(d)mμ(d){0,2m0,2m
    其中 w ( d ) w(d) w(d) 表示 d d d 的不同素因子个数。

3.3 欧拉函数 φ ( n ) \varphi(n) φ(n)

  • 定理一:设 n ≥ 1 n\ge 1 n1,则有
    ∑ d ∣ n φ ( d ) = n \color{red}\sum\limits_{d\mid n}\varphi(d)=n dnφ(d)=n

  • 定理二:设 ( m , n ) = 1 (m,n)=1 (m,n)=1,则 φ ( m n ) = φ ( m ) φ ( n ) \varphi(mn)=\varphi(m)\varphi(n) φ(mn)=φ(m)φ(n)

  • 定理三:有
    φ ( m n ) φ ( m ) φ ( n ) = ( m , n ) φ ( ( m , n ) ) \color{red}\dfrac{\varphi(mn)}{\varphi(m)\varphi(n)}=\dfrac{(m,n)}{\varphi((m,n))} φ(m)φ(n)φ(mn)=φ((m,n))(m,n)

    • a ∣ b a\mid b ab,则有 φ ( a ) ∣ φ ( b ) \varphi(a)\mid \varphi(b) φ(a)φ(b)
  • 定理四:设 k ≥ 2 k\ge 2 k2
    k φ ( n ) = n − 1 k\varphi(n)=n-1 kφ(n)=n1
    则有

    1. n = p 1 . . . p s n=p_1...p_s n=p1...ps,其中 p 1 , . . . , p s p_1,...,p_s p1,...,ps 是不同的奇素数
    2. 若奇素数 p ∣ n p\mid n pn,则 n n n 不含有 p t + 1 pt+1 pt+1 形的素因子
    3. k ≢ 1 ( m o d 3 ) k\not\equiv 1\pmod 3 k1(mod3),则 n ≢ 0 ( m o d 3 ) n\not\equiv 0\pmod 3 n0(mod3)

3.4 狄利克雷乘积 Dirichlet

  • 定义:对任意数论函数 f ( n ) , g ( n ) ∈ F f(n),g(n)\in \mathcal{F} f(n),g(n)F,其狄利克雷卷积 h ( n ) h(n) h(n) 定义为
    f ( n ) ∗ g ( n ) = h ( n ) = ∑ d ∣ n f ( d ) ⋅ g ( n d ) \color{red}f(n)*g(n)= h(n)=\sum\limits_{d\mid n}f(d)\cdot g\left(\dfrac{n}{d} \right) f(n)g(n)=h(n)=dnf(d)g(dn)

  • 定理一:对任意数论函数 f ( n ) , g ( n ) , k ( n ) ∈ F f(n),g(n),k(n) \in \mathcal{F} f(n),g(n),k(n)F,则有交换律和结合律
    f ( n ) ∗ g ( n ) = g ( n ) ∗ f ( n ) ( f ( n ) ∗ g ( n ) ) ∗ k ( n ) = f ( n ) ∗ ( g ( n ) ∗ k ( n ) ) f(n)*g(n)=g(n)*f(n)\\ (f(n)*g(n))*k(n)=f(n)*(g(n)*k(n)) f(n)g(n)=g(n)f(n)(f(n)g(n))k(n)=f(n)(g(n)k(n))

  • 定理二:设单位数论函数(单位元)
    δ ( n ) = ⌊ 1 n ⌋ = { 1 , n = 1 0 , n > 1 \color{red}\delta(n)=\lfloor \dfrac{1}{n}\rfloor=\begin{cases}1,\quad n=1\\0,\quad n>1 \end{cases} δ(n)=n1={1,n=10,n>1
    则对于任意数论函数 f ( n ) ∈ F f(n)\in \mathcal{F} f(n)F,均有
    f ( n ) ∗ δ ( n ) = δ ( n ) ∗ f ( n ) = f ( n ) \color{red}f(n)*\delta(n)=\delta(n)*f(n)=f(n) f(n)δ(n)=δ(n)f(n)=f(n)

  • 定理三:狄利克雷逆函数

    • 定义:设 f ∈ F f\in\mathcal{F} fF,若存在 g ∈ F g\in \mathcal{F} gF,使得 f ∗ g = δ f*g=\delta fg=δ,则称 f f f 是狄利克雷可逆,且称 g g g f f f 的狄利克雷逆,记为 g = f − 1 g=f^{-1} g=f1

    • 性质:设 f ∈ F f\in\mathcal{F} fF,则

      1. 存在 f − 1    ⟺    f ( 1 ) ≠ 0 \color{red}f^{-1}\iff f(1)\ne 0 f1f(1)=0

      2. f ( 1 ) ≠ 0 f(1)\ne 0 f(1)=0,则 g = f − 1 g=f^{-1} g=f1​ 由递推公式得到
        g ( 1 ) = 1 f ( 1 ) g ( n ) = − 1 f ( 1 ) ∑ d ∣ n , d < n g ( n d ) f ( d ) , n > 1 \color{red}g(1)=\dfrac{1}{f(1)}\\ \color{red}g(n)=\dfrac{-1}{f(1)}\sum\limits_{d\mid n,d<n}g\left(\dfrac{n}{d}\right)f(d),\quad n>1 g(1)=f(1)1g(n)=f(1)1dn,d<ng(dn)f(d),n>1

3.5 莫比乌斯反演公式

引入:对于 φ ( n ) \varphi(n) φ(n) 函数,有
n = ∑ d ∣ n φ ( d ) = ∑ d ∣ n φ ( n d ) φ ( n ) = ∑ d ∣ n μ ( d ) n d = ∑ d ∣ n μ ( n d ) d δ ( n ) = ⌊ 1 n ⌋ = ∑ d ∣ n μ ( d ) n=\sum\limits_{d\mid n} \varphi(d)=\sum\limits_{d\mid n} \varphi\left(\dfrac{n}{d} \right)\\ \varphi(n)=\sum\limits_{d\mid n} \mu(d)\dfrac{n}{d}=\sum\limits_{d\mid n} \mu\left(\dfrac{n}{d} \right)d\\ \delta(n) = \lfloor\dfrac{1}{n} \rfloor=\sum\limits_{d\mid n}\mu(d) n=dnφ(d)=dnφ(dn)φ(n)=dnμ(d)dn=dnμ(dn)dδ(n)=n1=dnμ(d)

对于一般的,有

  • 定义:对于数论函数 f ( n ) f(n) f(n) g ( n ) g(n) g(n),满足
    n = ∑ d ∣ n g ( d ) = ∑ d ∣ n g ( n d ) n=\sum\limits_{d\mid n} g(d)=\sum\limits_{d\mid n} g\left(\dfrac{n}{d} \right) n=dng(d)=dng(dn)
    则称 f ( n ) f(n) f(n) g ( n ) g(n) g(n)莫比乌斯变换 g ( n ) g(n) g(n) f ( n ) f(n) f(n)莫比乌斯逆变换

    • n n n φ ( n ) \varphi(n) φ(n) 的莫比乌斯变换。
  • 定理:设 f , g ∈ F f,g\in\mathcal{F} f,gF,则满足 n ∈ Z n\in Z nZ 时,等式有
    f ( n ) = ∑ d ∣ n g ( d )    ⟺    g ( n ) = ∑ d ∣ n μ ( n d ) f ( d ) f(n)=\sum\limits_{d\mid n} g(d)\iff g(n)=\sum\limits_{d\mid n} \mu\left(\dfrac{n}{d} \right)f(d) f(n)=dng(d)g(n)=dnμ(dn)f(d)

    • 例子 \color{White}\colorbox{Fuchsia}{例子}

      1. δ ( n ) = ∑ d ∣ n μ ( d )    ⟺    μ ( n ) = ∑ d ∣ n μ ( n d ) δ ( d ) \delta(n)=\sum\limits_{d\mid n}\mu(d)\iff \mu(n)=\sum\limits_{d\mid n} \mu\left(\dfrac{n}{d} \right)\delta(d) δ(n)=dnμ(d)μ(n)=dnμ(dn)δ(d)

      2. n = ∑ d ∣ n φ ( d )    ⟺    φ ( n ) = ∑ d ∣ n μ ( n d ) d n=\sum\limits_{d\mid n} \varphi(d)\iff \varphi(n)=\sum\limits_{d\mid n} \mu\left(\dfrac{n}{d} \right)d n=dnφ(d)φ(n)=dnμ(dn)d

      3. log ⁡ n = ∑ d ∣ n Λ ( d ) \log n=\sum\limits_{d\mid n}\Lambda (d) logn=dnΛ(d) Λ ( n ) = ∑ d ∣ n − μ ( d ) log ⁡ d \Lambda (n)=\sum\limits_{d\mid n}-\mu(d)\log d Λ(n)=dnμ(d)logd

        其中冯曼哥特函数 Λ ( n ) = { log ⁡ p ,    若 n = p m , m ≥ 1 , p 为 素 0 , o t h e r s \Lambda (n)=\begin{cases}\log p,\;若n=p^m,m\ge 1,p为素\\0,\qquad others \end{cases} Λ(n)={logp,n=pm,m1,p0,others

3.6 积性函数

  • 定义:对于数论函数 f ( n ) ≠ 0 ( n ) = 0 f(n)\ne 0(n)=0 f(n)=0(n)=0,则
    • f ( n ) f(n) f(n) 为积性函数    ⟺    \iff ( m , n ) = 1 (m,n)=1 (m,n)=1 时,有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n)
    • f ( n ) f(n) f(n)完全积性函数    ⟺    \iff 对于任意 m , n m,n m,n ,有 f ( m n ) = f ( m ) f ( n ) f(mn)=f(m)f(n) f(mn)=f(m)f(n)
    • 例子 \color{White}\colorbox{Fuchsia}{例子}
      1. 是积性函数,不是完全积性函数 μ ( n ) \mu(n) μ(n) φ ( n ) \varphi(n) φ(n) σ α ( n ) = ∑ d ∣ n f α ( d ) \sigma_{\alpha}(n)=\sum\limits_{d\mid n}f_{\alpha}(d) σα(n)=dnfα(d)
      2. 是完全积性函数 δ ( n ) = ⌊ 1 n ⌋ \delta(n)=\lfloor\dfrac{1}{n} \rfloor δ(n)=n1 f α ( n ) = n α , 其 中 α ∈ R f_{\alpha}(n)=n^{\alpha},其中\alpha\in R fα(n)=nα,αR
  • 定理一:若 f ∈ F f\in\mathcal{F} fF 为积性函数,则 f ( 1 ) = 1 \color{red}f(1)=1 f(1)=1
  • 定理二:若 f , g ∈ F f,g\in\mathcal{F} f,gF 为积性函数,则 f ∗ g f*g fg 也是积性函数
  • 定理三:若 f , f ∗ g ∈ F f,f*g\in\mathcal{F} f,fgF 为积性函数,则 g g g 也是积性函数
  • 定理四:若 f ∈ F f\in\mathcal{F} fF 为积性函数,则其狄利克雷逆函数 f − 1 f^{-1} f1 也是积性函数
  • 定理五:若 f ∈ F f\in\mathcal{F} fF 为积性函数,则 f f f完全积性函数    ⟺    f − 1 ( n ) = μ ( n ) f ( n ) \color{red}\iff f^{-1}(n)=\mu(n)f(n) f1(n)=μ(n)f(n)

3.7 数论函数 π ( n ) \pi(n) π(n)

  • 定义 π ( n ) \pi(n) π(n) 表示不大于 n n n 的素数的个数。

  • 定理一:设 n ≥ 2 n\ge 2 n2,则有
    1 8 n log ⁡ n ≤ π ( n ) ≤ 12 n log ⁡ n \color{red}\dfrac{1}{8}\dfrac{n}{\log n}\le \pi(n)\le 12\dfrac{n}{\log n} 81lognnπ(n)12lognn

  • 定理二:设 n ≥ 4 n\ge 4 n4,则有
    π ( n ) ≥ log ⁡ 2 n log ⁡ n \color{red}\pi(n)\ge \log{2}\dfrac{n}{\log n} π(n)log2lognn

    • Nair 定理:设 n ≥ 7 n\ge 7 n7,则 d n = lcm ⁡ ( 1 , 2 , . . . , n ) ≥ 2 n d_n=\operatorname{lcm}(1,2,...,n)\ge 2^n dn=lcm(1,2,...,n)2n
  • 素数定理 lim ⁡ x → ∞ π ( n ) x log ⁡ x = 1 \lim\limits_{x\rightarrow \infty}\dfrac{\pi(n)}{\dfrac{x}{\log x}}=1 xlimlogxxπ(n)=1

3.8 卢卡斯序列 Lucas

  • 定义:令 α \alpha α β \beta β x 2 − P x + Q = 0 x^2-Px+Q=0 x2Px+Q=0 的两根。记
    u n = α n − β n α − β ,    v n = α n + β n n ∈ Z + \color{red}u_n=\dfrac{\alpha^n-\beta^n}{\alpha-\beta},\; v_n=\alpha^n+\beta^n\qquad n\in Z^+ un=αβαnβn,vn=αn+βnnZ+
    则称 { u n } n = 0 ∞ , { v n } n = 0 ∞ \{u_n\}_{n=0}^{\infty},\{v_n\}_{n=0}^{\infty} {un}n=0,{vn}n=0 称为Lucas序列。

    • 已知: α + β = P \alpha+\beta=P α+β=P α β = Q \alpha\beta=Q αβ=Q
  • 定理一:对于 u n , v n ∈ Z u_n,v_n\in Z un,vnZ​,则 对于 n ≥ 2 n\ge 2 n2,有循环序列
    u 0 = 0 ,    u 1 = 1 ,    u n = P u n − 1 − Q u n − 2 v 0 = 2 ,    v 1 = P ,    v n = P v n − 1 − Q v n − 2 u_0=0,\;u_1=1,\;{\color{red}u_n=Pu_{n-1}-Qu_{n-2}}\\ v_0=2,\;v_1=P,\;\color{red}v_n=Pv_{n-1}-Qv_{n-2} u0=0,u1=1,un=Pun1Qun2v0=2,v1=P,vn=Pvn1Qvn2

  • 定理二:序列 u n , v n u_n,v_n un,vn 满足性质

    1. u 2 n = u n v n u_{2n}=u_nv_n u2n=unvn
    2. v n 2 − ( α − β ) 2 u n 2 = 4 Q n v_n^2-(\alpha-\beta)^2u_n^2=4Q^n vn2(αβ)2un2=4Qn
    3. 2 u m + n = u m v n + u n v m 2u_{m+n}=u_mv_n+u_nv_m 2um+n=umvn+unvm
    4. 2 v m − n = D u m u n + v m v n , D = P 2 − 4 Q 2v_{m-n}=Du_mu_n+v_mv_n,D=P^2-4Q 2vmn=Dumun+vmvn,D=P24Q
    5. u n 2 − u n − 1 u n + 1 = Q n − 1 u_n^2-u_{n-1}u_{n+1}=Q^{n-1} un2un1un+1=Qn1
  • 定理三:设 p p p 为素数,对于 l ∈ Z + l\in Z^+ lZ+,使得 p ∣ u l p\mid u_l pul l l l 最小,则
    p ∣ u n    ⟺    l ∣ n \color{red}p\mid u_n\iff l\mid n punln

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值