链式法则-梯度更新公式推导(手写笔记)

虽然以前学过导数、偏导、梯度之类的相关知识,但时间久远导致总感觉晕晕乎乎的,于是自己推导一下具有一个隐藏层的神经网络的梯度反向传播公式,希望对大家有帮助。

笔记中指出了为什么会存在梯度消失以及梯度爆炸现象。

梯度消失

主要是由于激活函数的导数值域通常比较小,当网络较深时,导数的连乘会导致该值越来越趋于0,从而导致靠近输出端的权重能够得到更新,而越靠近输入端的权重无法得到更新,最终导致学习效果不佳。

梯度爆炸

从公式中可以看出,梯度的反向传播与权重本身的值也有关系,当权重初始值特别大时,会导致反向传播时偏导数很大,即发生梯度爆炸现象。

因此我们在训练网络时应避免这两种现象,解决或者说减小梯度消失的办法是设计新的激活函数,比如ReLU激活函数就比较好的解决了当输出大于0时的梯度消失问题(当输出小于0时问题依然存在),这几是为什么目前绝大部分的神经网络都用ReLU作为激活函数。
而梯度爆炸主要就是通过设置较小的初始化权重来解决。

看到这里相信大家一定有所收获吧!!follow me,不定期更新学习笔记和思考。(注:最近主要在学习统计学习方法第2版-李航,有时间会把学到的知识点整理出来分享给大家)
在这里插入图片描述

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
循环神经网络(RNN)中的梯度消失问题是由于反向传播算法中的链法则导致的。如果在RNN中使用标准的反向传播算法,每个时间步的梯度将乘以一个矩阵,这个矩阵也就是RNN的权重矩阵。如果这个权重矩阵的所有特征值都小于1,那么在反向传播中,梯度会在时间步骤中指数级地减小,这就是所谓的梯度消失问题。 具体地,我们可以考虑一个时间步骤为t的RNN单元,其输入为$x_t$,输出为$h_t$,权重矩阵为$W$,激活函数为$f$。假设我们的目标是最小化损失函数$L$,则RNN的参数可以通过反向传播算法来更新。 对于第$t$个时间步骤的参数更新,我们需要计算$L$对$h_t$的梯度,即$\frac{\partial L}{\partial h_t}$。由于$h_t$同时影响到后续时间步骤的输出,我们还需要计算$L$对后续时间步骤的$h_{t+1}, h_{t+2}, ...$的梯度,即$\frac{\partial L}{\partial h_{t+i}}$。根据链法则,$\frac{\partial L}{\partial h_{t+i}}$可以表示为: $$ \frac{\partial L}{\partial h_{t+i}} = \frac{\partial L}{\partial h_{t+i-1}} \frac{\partial h_{t+i-1}}{\partial h_{t+i}} = \frac{\partial L}{\partial h_{t+i-1}} W $$ 其中,$\frac{\partial h_{t+i-1}}{\partial h_{t+i}}$就是RNN的权重矩阵$W$。因此,我们可以得到: $$ \frac{\partial L}{\partial h_t} = \sum_{i=t}^{T} \frac{\partial L}{\partial h_i} \frac{\partial h_i}{\partial h_t} = \sum_{i=t}^{T} \frac{\partial L}{\partial h_i} \prod_{j=t+1}^{i} W $$ 其中,$T$是序列的长度。从上面的公式可以看出,如果矩阵$W$的所有特征值都小于1,那么在求解$\frac{\partial L}{\partial h_t}$时,梯度会在每个时间步骤中指数级地减小,从而导致梯度消失问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值