第十二章 无穷级数

目录

第一节 常数项级数的概念和性质

题目练习

类型一 判断级数的收敛性(含调和级数)

第二节 常数项级数的审敛法

正项级数及其审敛法

比较法和比较法的极限形式一般和p级数,等比数列相比较

当遇到三大巨头、、n!首先用比值法和根值法

交错级数及其审敛法

绝对收敛和条件收敛

题目练习

类型一 比较法和比较法的极限形式

类型二 比值法和根值法

类型三 交错级数是绝对收敛还是条件收敛

第三节 幂级数

幂级数及其收敛性

阿贝尔定理

收敛半径,收敛区间,收敛域的区别

幂级数的性质

题目练习

类型一 求幂级数的收敛区间

类型二 求含缺项的幂级数的收敛区间

类型三 求幂级数收敛域

​编辑

类型四 利用逐项求导或逐项积分求和函数

第四节 函数展开成幂级数

题目练习

类型一 将函数展开成x的幂级数

分式

积分

类型二 将函数展开成(x+n)的幂级数

三角函数

非三角函数

第五节傅里叶级数

函数展开成傅里叶级数

f(x)为奇函数或者偶函数

定义在【0,π】的函数展开为正弦或余弦级数,进行延拓,断点和端点在【-π,π】上讨论

题目练习

类型一 对周期为2π的函数展开为傅里叶级数

类型二 对f(x)为奇函数或者偶函数展开为傅里叶级数​编辑

类型三 对定义在【0,π】的函数展开为正弦级数和余弦级数

第六节 一般周期函数的傅里叶级数

周期为2l的函数展开为傅里叶级数

在任意有限区间上函数的傅里叶级数展开

题目练习

类型一 周期为2l

类型二 在l上展开为周期为2l的余弦或正弦级数


第一节 常数项级数的概念和性质

常数项级数:无穷个数的和

\lim_{n->\propto }u_{n}\neq 0那么一定发散

题目练习

类型一 判断级数的收敛性(含调和级数)

第二节 常数项级数的审敛法

正项级数及其审敛法

比较法和比较法的极限形式一般和p级数,等比数列相比较

当遇到三大巨头a^{n}n^{n}、n!首先用比值法和根值法

交错级数及其审敛法

绝对收敛和条件收敛

题目练习

类型一 比较法和比较法的极限形式

类型二 比值法和根值法

类型三 交错级数是绝对收敛还是条件收敛

第三节 幂级数

幂级数及其收敛性

阿贝尔定理

注意此处为x^{n},如果为x^{2n}或者为x^{2n-1}则需要另行讨论(题目练习中会涉及)

收敛半径,收敛区间,收敛域的区别

收敛半径为R

收敛区间为开区间(-R,R)

收敛域需要对边界x=+-R进行讨论

幂级数的性质

题目练习

类型一 求幂级数的收敛区间

类型二 求含缺项的幂级数的收敛区间

收敛区间是收敛点的集合,则当ρ<1则收敛,找到最大的点,即可确定收敛区域

类型三 求幂级数收敛域

类型四 利用逐项求导或逐项积分求和函数

关键公式\sum_{n=0 }^{\propto }x^{n}=\frac{1}{1-x}

以及\sum_{n=1}^{\propto }x^{n}=\frac{x}{1-x}

\frac{a_{1}}{1-q}

第四节 函数展开成幂级数

题目练习

类型一 将函数展开成x的幂级数

分式

积分

类型二 将函数展开成(x+n)的幂级数

三角函数

非三角函数

第五节傅里叶级数

函数展开成傅里叶级数

对间断点和端点需要讨论

f(x)为奇函数或者偶函数

定义在【0,π】的函数展开为正弦或余弦级数,进行延拓,断点和端点在【-π,π】上讨论

题目练习

类型一 对周期为2π的函数展开为傅里叶级数

类型二 对f(x)为奇函数或者偶函数展开为傅里叶级数

类型三 对定义在【0,π】的函数展开为正弦级数和余弦级数

第六节 一般周期函数的傅里叶级数

周期为2l的函数展开为傅里叶级数

在任意有限区间上函数的傅里叶级数展开

题目练习

类型一 周期为2l

类型二 在l上展开为周期为2l的余弦或正弦级数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值