高数(下) Ch12.无穷级数

文章目录

Ch12. 无穷级数

零、无穷级数的分类

(1)常数项级数
①同号级数:正项级数、负项级数
②变号级数:交错级数任意项级数

(2)函数项级数:
幂级数
②三角级数:傅里叶级数


一、常数项级数

(一) 级数的概念与性质

1.级数的概念

在这里插入图片描述


(1)级数的部分和 S n = ∑ k = 1 n u k S_n=\sum\limits_{k=1}^nu_k Sn=k=1nuk:级数的前n项和

级数的前 n n n 项和 称为 级数的部分和 S n = u 1 + u 2 + . . . + u k + . . . + u n = ∑ k = 1 n u k S_n=u_1+u_2+...+u_k+...+u_n=\sum\limits_{k=1}^nu_k Sn=u1+u2+...+uk+...+un=k=1nuk


(2)无穷级数: ∑ k = 1 ∞ u k = lim ⁡ n → ∞ ∑ k = 1 n u k = lim ⁡ n → ∞ S n \sum\limits_{k=1}^∞u_k=\lim\limits_{n→∞}\sum\limits_{k=1}^nu_k=\lim\limits_{n→∞}S_n k=1uk=nlimk=1nuk=nlimSn

(常数项)无穷级数简称(常数项)级数,记为 ∑ k = 1 ∞ u k \sum\limits_{k=1}^∞u_k k=1uk
∑ k = 1 ∞ u k = u 1 + u 2 + . . . + u k + . . . + u n + . . . = lim ⁡ n → ∞ ∑ k = 1 n u k = lim ⁡ n → ∞ S n \sum\limits_{k=1}^∞u_k=u_1+u_2+...+u_k+...+u_n+...=\lim\limits_{n→∞}\sum\limits_{k=1}^nu_k=\lim\limits_{n→∞}S_n k=1uk=u1+u2+...+uk+...+un+...=nlimk=1nuk=nlimSn

n n n u n u_n un 称为级数的一般项


(3)收敛与发散

(1)如果级数 ∑ i = 1 ∞ u i \sum\limits_{i=1}^∞u_i i=1ui 的部分和数列 { s n } \{s_n\} {sn}有极限s,即 lim ⁡ n → ∞ s n = s \lim\limits_{n→∞}s_n=s nlimsn=s,那么称无穷级数 ∑ i = 1 ∞ u i \sum\limits_{i=1}^∞u_i i=1ui 收敛。这时极限 s s s叫做这级数的和,并写成 s = u 1 + u 2 + . . . + u i + . . . s=u_1+u_2+...+u_i+... s=u1+u2+...+ui+...

(2))如果级数 ∑ i = 1 ∞ u i \sum\limits_{i=1}^∞u_i i=1ui 的部分和数列 { s n } \{s_n\} {sn}没有极限,那么称无穷级数 ∑ i = 1 ∞ u i \sum\limits_{i=1}^∞u_i i=1ui 发散



例题1:24李林六(二)12.   无穷级数的定义:前n项和的极限
在这里插入图片描述

分析:
在这里插入图片描述

答案: 4 e \dfrac{4}{e} e4


例题2:19年17.   定积分的几何应用:求平面图形的面积、级数求和
在这里插入图片描述

分析:见李艳芳解析
在这里插入图片描述

答案: 1 2 + 1 e π − 1 = e π + 1 2 ( e π − 1 ) \dfrac{1}{2}+\dfrac{1}{e^π-1}=\dfrac{e^π+1}{2(e^π-1)} 21+eπ11=2(eπ1)eπ+1


例题3:880 P46 二(3)(4)(6)
lim ⁡ n → ∞ ∑ k = 1 n = ∑ k = 1 ∞ \lim\limits_{n→∞}\sum\limits_{k=1}^n=\sum\limits_{k=1}^∞ nlimk=1n=k=1


例题4:用级数的概念判别敛散性(可以写成前n项和的形式)
在这里插入图片描述
答案:

___




2.级数的性质 (5条)

在这里插入图片描述

(1)数乘

(2)加减

①收敛 ± 收敛 = 收敛
②收敛 ± 发散 = 发散
③发散 ± 发散 = 不确定


(3)去掉有限项,不改变敛散性

推论: ∑ n = 1 ∞ u n \sum\limits_{n=1}^∞u_n n=1un收敛,则 ∑ n = 1 ∞ u n + 1 \sum\limits_{n=1}^∞u_{n+1} n=1un+1也收敛
证明: ∑ n = 1 ∞ u n + 1 = ∑ n = 2 ∞ u n = ∑ n = 1 ∞ u n + 1 − u 1 \sum\limits_{n=1}^∞u_{n+1}=\sum\limits_{n=2}^∞u_n=\sum\limits_{n=1}^∞u_{n+1}-u_1 n=1un+1=n=2un=n=1un+1u1,收敛


(4)收敛级数任意加括号,仍收敛

在这里插入图片描述


(5)必要条件:一般项趋于0

在这里插入图片描述

反例: u n = 1 n u_n=\dfrac{1}{n} un=n1



3.四个特殊的常数项级数
等比级数 / 几何级数

等比级数(几何级数): ∑ n = 0 ∞ a q n = { a 1 − q   ( 收敛 ) , ∣ q ∣ < 1 ∞   ( 发散 ) , ∣ q ∣ ≥ 1 \sum\limits_{n=0}^∞aq^n=\left\{\begin{aligned} \dfrac{a}{1-q}\ (收敛),& |q|<1\\ ∞\ (发散),& |q|≥1 \end{aligned}\right. n=0aqn= 1qa (收敛) (发散)q<1q1


例: s 1 ( x ) = ∑ n = 1 ∞ e − n x s_1(x)=\sum\limits_{n=1}^∞e^{-nx} s1(x)=n=1enx。当 ∣ e − x ∣ < 1 |e^{-x}|<1 ex<1,即 x > 0 x>0 x>0 时,由几何级数的求和公式可得 s 1 ( x ) = e − x 1 − e − x = 1 e x − 1 s_1(x)=\dfrac{e^{-x}}{1-e^{-x}}=\dfrac{1}{e^x-1} s1(x)=1exex=ex11。该级数收敛, s 1 ( x ) s_1(x) s1(x)的收敛域为 ( 0 , + ∞ ) (0,+∞) (0,+)   【21年18.】


②p级数

p级数: ∑ n = 1 ∞ 1 n p \sum\limits_{n=1}^∞\dfrac{1}{n^p} n=1np1 { p > 1 ,收敛 0 < p ≤ 1 ,发散 \left\{\begin{aligned} p>1&,收敛 \\ 0<p≤1 &,发散 \end{aligned}\right. {p>10<p1,收敛,发散

p=2时, ∑ n = 1 ∞ 1 n 2 = π 2 6 \sum\limits_{n=1}^∞\dfrac{1}{n^2}=\dfrac{π^2}{6} n=1n21=6π2


③调和级数

调和级数: ∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + . . . + 1 n + . . . = ∞ \sum\limits_{n=1}^∞\dfrac{1}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}+...=∞ n=1n1=1+21+31+...+n1+...=       发散


④交错调和级数、交错p级数

交错调和级数: ∑ n = 1 ∞ ( − 1 ) n − 1 1 n = 1 − 1 2 + 1 3 + . . . + ( − 1 ) n − 1 1 n + . . . = ln ⁡ 2 \sum\limits_{n=1}^∞(-1)^{n-1}\dfrac{1}{n}=1-\dfrac{1}{2}+\dfrac{1}{3}+...+(-1)^{n-1}\dfrac{1}{n}+...=\ln2 n=1(1)n1n1=121+31+...+(1)n1n1+...=ln2       收敛


交错p级数: ∑ n = 1 ∞ ( − 1 ) n − 1 1 n p \sum\limits_{n=1}^∞(-1)^{n-1}\dfrac{1}{n^p} n=1(1)n1np1 { p > 1 , 绝对收敛 0 < p ≤ 1 , 条件收敛 p < 0 , 发散 \left\{\begin{aligned} p>1, & 绝对收敛 \\ 0<p≤1, & 条件收敛 \\ p<0,&发散 \end{aligned}\right. p>10<p1p<0绝对收敛条件收敛发散


4.例题:常数项级数 敛散性的判定

1.常用于举反例的一般项:
a n = 1 n a_n=\dfrac{1}{n} an=n1 a n = ( − 1 ) n ⋅ 1 n a_n=(-1)^n·\dfrac{1}{n} an=(1)nn1
a n = ( − 1 ) n ⋅ 1 n a_n=(-1)^n·\dfrac{1}{\sqrt{n}} an=(1)nn 1
u n = 0 , v n = ± 1 u_n=0,v_n=±1 un=0,vn=±1



例题1:06年9.
在这里插入图片描述

答案:D


例题2:09年4.  常数项级数敛散性的判定
在这里插入图片描述

分析:
方法一:排除法
A.反例: a n = ( − 1 ) n 1 n a_n=(-1)^n\dfrac{1}{\sqrt{n}} an=(1)nn 1 b n = ( − 1 ) n 1 n b_n=(-1)^n\dfrac{1}{\sqrt{n}} bn=(1)nn 1 a n b n = 1 n a_nb_n=\dfrac{1}{n} anbn=n1,级数发散
B.反例: a n = 1 n a_n=\dfrac{1}{n} an=n1 b n = 1 n b_n=\dfrac{1}{n} bn=n1 a n b n = 1 n 2 a_nb_n=\dfrac{1}{n^2} anbn=n21,级数收敛
D.反例: a n = 1 n a_n=\dfrac{1}{n} an=n1 b n = ( − 1 ) n 1 n b_n=(-1)^n\dfrac{1}{n} bn=(1)nn1 a n b n = 1 n 4 a_nb_n=\dfrac{1}{n^4} anbn=n41,级数收敛

方法二:直接法
①基本结论:对于一般级数 ∑ n = 1 ∞ ∣ b n ∣ \sum\limits_{n=1}^∞|b_n| n=1bn收敛,则 ∑ n = 1 ∞ b n 2 \sum\limits_{n=1}^∞b^2_n n=1bn2收敛
②∵ lim ⁡ n → ∞ a n = 0 \lim\limits_{n→∞}a_n=0 nliman=0收敛数列必有界,则 ∣ a n ∣ ≤ M |a_n|≤M anM,则 a n 2 b n 2 ≤ M 2 b n 2 a_n^2b_n^2≤M^2b_n^2 an2bn2M2bn2
③∵ ∑ n = 1 ∞ M 2 b n 2 \sum\limits_{n=1}^∞M^2b^2_n n=1M2bn2收敛,由正项级数的比较审敛法知 ∑ n = 1 ∞ a n 2 b n 2 \sum\limits_{n=1}^∞a_n^2b^2_n n=1an2bn2也收敛

答案:C



例题3:19年3.  常数项级数敛散性的判定
在这里插入图片描述

分析:

方法一:排除法:举反例:单调增加的有界数列,可取 u n = − 1 n u_n=-\dfrac{1}{n} un=n1
A.反例: u n = − 1 n + 1 u_n=-\dfrac{1}{n}+1 un=n1+1,则 u n n = − 1 n 2 + 1 n \dfrac{u_n}{n}=-\dfrac{1}{n^2}+\dfrac{1}{n} nun=n21+n1,发散
B.反例: u n = − 1 n u_n=-\dfrac{1}{n} un=n1,则 ( − 1 ) n 1 u n = ( − 1 ) n + 1 n (-1)^n\dfrac{1}{u_n}=(-1)^{n+1}n (1)nun1=(1)n+1n,发散
C.反例: u n = − 1 n u_n=-\dfrac{1}{n} un=n1,则 ( 1 − u n u n + 1 ) = − 1 n (1-\dfrac{u_n}{u_{n+1}})=-\dfrac{1}{n} (1un+1un)=n1,发散

方法二:直接法
lim ⁡ n → ∞ u n = A \lim\limits_{n→∞}u_n=A nlimun=A,则 lim ⁡ n → ∞ u n 2 = A 2 \lim\limits_{n→∞}u_n^2=A^2 nlimun2=A2
∑ k = 1 n ( u k + 1 2 − u k 2 ) = u n + 1 2 − u 1 2 \sum\limits_{k=1}^n(u_{k+1}^2-u_k^2)=u_{n+1}^2-u_1^2 k=1n(uk+12uk2)=un+12u12
所以 ∑ n = 1 ∞ ( u n + 1 2 − u n 2 ) = lim ⁡ n → ∞ ∑ k = 1 n ( u k + 1 2 − u k 2 ) = lim ⁡ n → ∞ ( u n + 1 2 − u 1 2 ) = A 2 − u 1 2 \sum\limits_{n=1}^∞(u_{n+1}^2-u_n^2)=\lim\limits_{n→∞}\sum\limits_{k=1}^n(u_{k+1}^2-u_k^2)=\lim\limits_{n→∞}(u_{n+1}^2-u_1^2)=A^2-u_1^2 n=1(un+12un2)=nlimk=1n(uk+12uk2)=nlim(un+12u12)=A2u12

答案:D


例题4:24李林六(一)3.
在这里插入图片描述

答案:D




(二) 常数项级数的审敛准则

1.正项级数

在这里插入图片描述


(0)正项级数收敛的充分必要条件

正项级数收敛的充分必要条件:它的部分和数列 s n {s_n} sn有上界,即:
①若 ∑ n = 1 ∞ u n \sum\limits_{n=1}^∞u_n n=1un为正项级数且收敛,则 lim ⁡ n → ∞ S n \lim\limits_{n→∞}S_n nlimSn存在
②若正项级数 ∑ n = 1 ∞ u n \sum\limits_{n=1}^∞u_n n=1un发散,则 lim ⁡ n → ∞ S n \lim\limits_{n→∞}S_n nlimSn不存在


(1)比较判别法

比较审敛法:大的收敛,小的收敛;小的发散,大的发散
在这里插入图片描述

1.先预判敛散性。若收敛,要放大。若发散,要缩小。
2.比较审敛法可用于抽象级数的审敛。而极限审敛法、比值法、根值法 必须要有具体的级数表达式才能使用。
结论:抽象级数的审敛,仅能使用比较审敛法。关键是要找到比较的对象。


(2)比较审敛法极限形式

在这里插入图片描述


(3)比值法

在这里插入图片描述

ρ = lim ⁡ n → ∞ u n + 1 ( x ) u n ( x ) { 收敛, ρ < 1 发散, ρ > 1 不一定, ρ = 1 (可能收敛,可能发散) ρ=\lim\limits_{n→∞}\dfrac{u_{n+1}(x)}{u_n(x)} \qquad \qquad \left\{\begin{aligned} 收敛,&ρ < 1 \\ 发散,&ρ > 1 \\ 不一定,&ρ =1 (可能收敛,可能发散) \end{aligned}\right. ρ=nlimun(x)un+1(x) 收敛,发散,不一定,ρ<1ρ>1ρ=1(可能收敛,可能发散)


(4)根值法

在这里插入图片描述


(5)积分判别法

在这里插入图片描述

f(x) 单调减、非负、连续

里面的1可以换成任意正整数,如f(x)在[2,+∞]上单减、非负、连续,且an=f(n),则 ∑ n = 2 ∞ a n 与 ∫ 2 + ∞ f ( x ) d x 同敛散 \sum\limits_{n=2}^∞a_n与\int_2^{+∞}f(x)dx同敛散 n=2an2+f(x)dx同敛散

2021考研数学大纲新增——积分判别法。 考研不以任何一本书或教材作为依据,而是以考研大纲作为依据。



适用积分判别法级数: ∑ n = 1 ∞ 1 n p \sum\limits_{n=1}^∞\dfrac{1}{n^p} n=1np1 ∑ n = 2 ∞ 1 n ln ⁡ p n \sum\limits_{n=2}^∞\dfrac{1}{n\ln^pn} n=2nlnpn1

结论:



5个判别法的选择原则

(1)(2) 比较法、比较法的极限形式
(3)(4) 比值法、根值法
(5) 积分判别法:单调减、非负、连续

比较法、比较法的极限形式比值法、根值法
优点适用范围广使用方便,只需要跟自己比
缺点使用不方便,需要找一个比较对象适用范围窄,很多做不出判定
举例 n p n^p np ln ⁡ n \ln n lnn级数通项三巨头: a n a^n an n ! n! n! n n n^n nn

先考虑比值法、根值法,若无法做出判定,再考虑比较法、比较法的极限形式
n ! n! n! 用比值法, ( ) n ()^n ()n 用根值法



(6)正项级数收敛结论

(1)若正项级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^∞a_n n=1an收敛,则 ∑ n = 1 ∞ a 2 n \sum\limits_{n=1}^∞a_{2n} n=1a2n ∑ n = 1 ∞ a 2 n − 1 \sum\limits_{n=1}^∞a_{2n-1} n=1a2n1均收敛。但对一般级数,该结论不成立


(2)①正项级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^∞a_n n=1an收敛,则 ∑ n = 1 ∞ a n 2 \sum\limits_{n=1}^∞a^2_n n=1an2 ∑ n = 1 ∞ a n a n + 1 \sum\limits_{n=1}^∞a_na_{n+1} n=1anan+1均收敛
【但对一般级数,该结论不成立。反例: a n = ( − 1 ) n 1 n a_n=(-1)^n\dfrac{1}{\sqrt{n}} an=(1)nn 1,级数收敛。而 a n 2 = 1 n a_n^2=\dfrac{1}{n} an2=n1,级数发散。】
对于一般级数 ∑ n = 1 ∞ ∣ a n ∣ \sum\limits_{n=1}^∞|a_n| n=1an收敛,则 ∑ n = 1 ∞ a n 2 \sum\limits_{n=1}^∞a^2_n n=1an2收敛


(3)若正项级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^∞a_n n=1an收敛,则 ∑ n = 1 ∞ a n S n \sum\limits_{n=1}^∞a_nS_n n=1anSn ∑ n = 1 ∞ a n S n \sum\limits_{n=1}^∞\dfrac{a_n}{S_n} n=1Snan均收敛



例题1:22年14.
在这里插入图片描述

分析:

答案:-1




2.交错级数: ∑ n = 1 ∞ ( − 1 ) n − 1 u n , u n > 0 \sum\limits_{n=1}^∞(-1)^{n-1}u_n,u_n>0 n=1(1)n1unun>0
交错级数审敛法——莱布尼茨收敛定理

莱布尼茨收敛定理:【充分非必要条件.反之交错级数收敛,推不出单调减少】

u n u_n un单调减少:如 u n ≥ u n + 1 > 0 u_n≥u_{n+1}>0 unun+1>0
lim ⁡ n → ∞ u n = 0 \lim\limits_{n→∞}u_n=0 nlimun=0:趋于0
则交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum\limits_{n=1}^∞(-1)^{n-1}u_n n=1(1)n1un (或 ∑ n = 1 ∞ ( − 1 ) n u n \sum\limits_{n=1}^∞(-1)^nu_n n=1(1)nun) 收敛



3.任意项级数
(1)绝对收敛与条件收敛

在这里插入图片描述

绝对收敛: ∑ n = 1 ∞ u n 收敛, ∑ n = 1 ∞ ∣ u n ∣ 也收敛 绝对收敛:\sum\limits_{n=1}^∞u_n收敛,\sum\limits_{n=1}^∞|u_n|也收敛 绝对收敛:n=1un收敛,n=1un也收敛(本身收敛,各项加绝对值也收敛)
条件收敛: ∑ n = 1 ∞ u n 收敛, ∑ n = 1 ∞ ∣ u n ∣ 发散 条件收敛:\sum\limits_{n=1}^∞u_n收敛,\sum\limits_{n=1}^∞|u_n|发散 条件收敛:n=1un收敛,n=1un发散(本身收敛,各项加绝对值发散)


1.级数共有绝对收敛、条件收敛和发散三种情况。收敛级数只有绝对收敛和条件收敛两种情况。
2. ∑ n = 1 ∞ a n x n 在 x = x 0 处条件收敛,则收敛半径 R = x 0 \sum\limits_{n=1}^∞a_nx_n在x=x_0处条件收敛,则收敛半径R=x_0 n=1anxnx=x0处条件收敛,则收敛半径R=x0


(2)绝对收敛必收敛 (任意项级数)

收敛分绝对收敛和条件收敛: ∑ n = 1 ∞ u n \sum\limits_{n=1}^∞u_n n=1un绝对收敛 ⇦⇨ ∑ n = 1 ∞ u n \sum\limits_{n=1}^∞u_n n=1un收敛 且 ∑ n = 1 ∞ ∣ u n ∣ \sum\limits_{n=1}^∞|u_n| n=1un也收敛


(3)结论

1.用比值法、根值法,求得绝对值级数发散,则原级数也发散
2.绝对收敛 ± 条件收敛 = 条件收敛
条件收敛 ± 条件收敛 = 条件收敛 或 绝对收敛
绝对收敛 ± 绝对收敛 = 绝对收敛


(4)例题


例题1:23年4.
在这里插入图片描述

答案:A





二、幂级数

幂级数定义: ∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 2 + a 3 x 3 + . . . + a n x n + . . . \sum\limits_{n=0}^∞a_nx^n=a_0+a_1x+a_2x^22+a_3x^3+...+a_nx^n+... n=0anxn=a0+a1x+a2x22+a3x3+...+anxn+...



例题1:10年14.   数字特征与幂级数
在这里插入图片描述

答案:2



(一) 收敛半径、收敛区间、收敛域

1.阿贝尔定理

在这里插入图片描述


阿贝尔定理推论:

1.正数R称为幂级数的收敛半径开区间(-R,R)称为幂级数的收敛区间

①当|x|<R时,幂级数绝对收敛
②当|x|>R时,幂级数发散;
③当x = R或x = -R时,幂级数敛散性不定,可能收敛也可能发散。敛散性视 { a n } \{a_n\} {an}确定。


2.幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^∞a_nx^n n=0anxn,当且仅当 x = ± R x=±R x=±R 时,才会出现条件收敛。

∑ n = 0 ∞ ( − 1 ) n a n \sum\limits_{n=0}^∞(-1)^na_n n=0(1)nan条件收敛   ⇦⇨   ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^∞a_nx^n n=0anxn x = − 1 x=-1 x=1 处条件收敛   ∴ R = 1 R=1 R=1



例题1:15年3.  阿贝尔定理
在这里插入图片描述

分析:
在这里插入图片描述

答案:B


例题2:24李林六(二)3.   阿贝尔定理
在这里插入图片描述

分析:
在这里插入图片描述
答案:D


例题3:11年2.   阿贝尔定理 + 莱布尼茨收敛定理
在这里插入图片描述

分析:
在这里插入图片描述

答案:C


例题4:20年4.
在这里插入图片描述

答案:A




2.求幂级数的收敛半径、收敛区间、收敛域

求收敛域:①求收敛半径 ②判断端点是否收敛


(1)阿达玛公式

1.收敛半径R:
①  ρ = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ R = 1 ρ ②  ρ = lim ⁡ n → ∞ ∣ a n ∣ n R = 1 ρ ① \ ρ=\lim\limits_{n→∞}|\dfrac{a_{n+1}}{a_n}|\qquad \qquad R=\dfrac{1}{ρ}\\[3mm]②\ ρ=\lim\limits_{n→∞}\sqrt[n]{|a_n|}\qquad \qquad R=\dfrac{1}{ρ}  ρ=nlimanan+1R=ρ1 ρ=nlimnan R=ρ1
2.收敛区间: ( − R , R ) (-R,R) (R,R)         收敛区间是开区间
3.收敛域:在收敛区间的基础上,验证x=R和x=-R两个端点

在这里插入图片描述


(2)比值法:求幂级数的收敛域

u n ( x ) = a n x n , ρ = lim ⁡ n → ∞ ∣ u n + 1 ( x ) u n ( x ) ∣ < 1 ,收敛 u_n(x)=a_nx^n,ρ=\lim\limits_{n→∞}|\dfrac{u_{n+1}(x)}{u_n(x)}|<1,收敛 un(x)=anxnρ=nlimun(x)un+1(x)<1,收敛



例题1:22年14.   求函数项级数的收敛域:比值法
在这里插入图片描述

分析: e − n x e^{-nx} enx,无法完全分离出 a n a_n an,不能使用阿达玛公式,改用比值法(ρ<1)求x的收敛范围

在这里插入图片描述

答案:-1



(3)缺项幂级数
用 比值法 或 根值法,带 u n ( x ) u_n(x) un(x)

缺项幂级数求收敛域: u n ( x ) u_n(x) un(x)比值法 或 根值法,ρ(x)<1,得出收敛区间。再代入端点值验证,得出收敛域。

u n ( x ) = a n x n , ρ = lim ⁡ n → ∞ ∣ u n + 1 ( x ) u n ( x ) ∣ u_n(x)=a_nx^n,ρ=\lim\limits_{n→∞}|\dfrac{u_{n+1}(x)}{u_n(x)}| un(x)=anxnρ=nlimun(x)un+1(x)


公式改进: R 2 = 1 ρ R^2=\dfrac{1}{ρ} R2=ρ1 (仅能用于选填)

只有偶次项 x 2 n x^{2n} x2n 或 奇次项 x 2 n − 1 x^{2n-1} x2n1 的幂级数,
依然用比值法、根值法求ρ,则 R 2 = 1 ρ R^2=\dfrac{1}{ρ} R2=ρ1 R = 1 ρ R=\sqrt{\dfrac{1}{ρ}} R=ρ1

在这里插入图片描述



例题1:12年17.   求缺项幂级数的收敛域及和函数
在这里插入图片描述

分析:缺项幂级数求收敛域: u n ( x ) u_n(x) un(x)比值法,ρ(x)<1,得出收敛区间。再代入端点值验证,得出收敛域。

答案:
在这里插入图片描述


例题2:24李林六(一)19.   求缺项幂级数的收敛域及和函数
在这里插入图片描述

答案:
在这里插入图片描述



例题3: 1995年4.  缺项幂级数也可以用阿达玛公式,只不过要注意 R 2 = 1 ρ , R = 1 ρ R^2=\dfrac{1}{ρ},R=\sqrt{\dfrac{1}{ρ}} R2=ρ1R=ρ1
在这里插入图片描述

分析:
在这里插入图片描述

答案: 3 \sqrt{3} 3




(4)偏心幂级数 ( x − x 0 ) n (x-x_0)^n (xx0)n

代入收敛半径时:当 x − x 0 = R x-x_0=R xx0=R x − x 0 = − R x-x_0=-R xx0=R




(二) 幂级数性质

1.有理运算性质

两个幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^∞a_nx_n n=0anxn ∑ n = 0 ∞ b n x n \sum\limits_{n=0}^∞b_nx_n n=0bnxn 的收敛半径分别为 R 1 R₁ R1 R 2 R₂ R2,则在 R = min ⁡ { R 1 , R 2 } R=\min\{R₁,R₂\} R=min{R1,R2}内,加减乘除运算都成立。
①当 R 1 ≠ R 2 R_1≠R_2 R1=R2时,新的收敛半径为R=min{R₁,R₂}
②当 R 1 = R 2 R_1=R_2 R1=R2时,新的收敛半径R ≥ R1或R2

在这里插入图片描述



2.幂级数的和函数S(x)的性质
(1)连续

幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^∞a_nx^n n=0anxn的和函数 S ( x ) S(x) S(x)在其收敛域 I I I 上连续


(2)逐项积分

幂级数 ∑ n = 0 ∞ a n x n \sum\limits_{n=0}^∞a_nx^n n=0anxn的和函数 S ( x ) S(x) S(x)在其收敛域 I I I上可积,并有逐项积分公式 ∫ 0 x S ( t ) d t = ∫ 0 x ∑ n = 0 ∞ a n t n d t = ∑ n = 0 ∞ ∫ 0 x a n t n d t = ∑ n = 0 ∞ a n n + 1 x n + 1 ( x ∈ I ) \int_0^xS(t)dt=\int_0^x\sum\limits_{n=0}^∞a_nt^ndt=\sum\limits_{n=0}^∞\int_0^xa_nt^ndt=\sum\limits_{n=0}^∞\dfrac{a_n}{n+1}x^{n+1} \quad (x∈I) 0xS(t)dt=0xn=0antndt=n=00xantndt=n=0n+1anxn+1(xI)
且逐项积分后所得到的幂级数和原级有相同的收敛半径。


(3)逐项求导: ∑ n = 0 ∞ n x n − 1 = ∑ n = 0 ∞ ( x n ) ′ \sum\limits_{n=0}^∞nx^{n-1}=\sum\limits_{n=0}^∞(x^n)' n=0nxn1=n=0(xn)

其收敛区间(-R,R)内可导,且有逐项求导公式 S ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 0 ∞ n a n x n − 1 ( ∣ x ∣ < R ) S'(x)=(\sum\limits_{n=0}^∞a_nx^n)'=\sum\limits_{n=0}^∞(a_nx^n)'=\sum\limits_{n=0}^∞na_nx^{n-1} \quad (|x|<R) S(x)=(n=0anxn)=n=0(anxn)=n=0nanxn1(x<R)。且逐项求导后所得到的幂级数和原级数有相同的收敛半径。收敛区间上任意阶可导。


∑ n = 0 ∞ n x n − 1 = ∑ n = 0 ∞ ( x n ) ′ = ( ∑ n = 0 ∞ x n ) ′ = ( 1 1 − x ) ′ = 1 ( 1 − x ) 2 \sum\limits_{n=0}^∞nx^{n-1}=\sum\limits_{n=0}^∞(x^n)'=(\sum\limits_{n=0}^∞x^n)'=(\dfrac{1}{1-x})'=\dfrac{1}{(1-x)^2} n=0nxn1=n=0(xn)=(n=0xn)=(1x1)=(1x)21

∑ n = 1 ∞ n x n − 1 = ∑ n = 1 ∞ ( x n ) ′ = ( ∑ n = 1 ∞ x n ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \sum\limits_{n=1}^∞nx^{n-1}=\sum\limits_{n=1}^∞(x^n)'=(\sum\limits_{n=1}^∞x^n)'=(\dfrac{x}{1-x})'=\dfrac{1}{(1-x)^2} n=1nxn1=n=1(xn)=(n=1xn)=(1xx)=(1x)21



总结:
①幂级数逐项求导有可能缩小收敛域,幂级数逐项积分可能扩大收敛域。但收敛半径、收敛区间不变。
即求导和积分只可能会改变端点处的敛散性。

②要用连续、逐项积分,先求收敛域。要用逐项求导,先求收敛区间。   【2013年16(1)】


在这里插入图片描述



(三) 幂级数展开

1.泰勒级数(麦克劳林级数)

在这里插入图片描述

幂函数展开式级数
e x e^x ex 1 + x + x 2 2 ! + . . . + x n n ! 1+x+\dfrac{x^2}{2!}+...+\dfrac{x^n}{n!} 1+x+2!x2+...+n!xn ∑ n = 0 ∞ x n n ! ( − ∞ < x < + ∞ ) \sum\limits_{n=0}^∞\dfrac{x^n}{n!}\qquad(-∞<x<+∞) n=0n!xn(<x<+)
sin ⁡ x \sin x sinx x − x 3 3 ! + x 5 5 ! . . . + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + . . . x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}...+(-1)^{n}\dfrac{x^{2n+1}}{(2n+1)!}+... x3!x3+5!x5...+(1)n(2n+1)!x2n+1+... ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! ( − ∞ < x < + ∞ ) \sum\limits_{n=0}^∞(-1)^{n}\dfrac{x^{2n+1}}{(2n+1)!}\quad(-∞<x<+∞) n=0(1)n(2n+1)!x2n+1(<x<+)
cos ⁡ x \cos x cosx 1 − x 2 2 ! + x 4 4 ! . . . + ( − 1 ) n x 2 n ( 2 n ) ! + . . . 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}...+(-1)^n\dfrac{x^{2n}}{(2n)!}+... 12!x2+4!x4...+(1)n(2n)!x2n+... ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! ( − ∞ < x < + ∞ ) \sum\limits_{n=0}^∞(-1)^{n}\dfrac{x^{2n}}{(2n)!}\qquad(-∞<x<+∞) n=0(1)n(2n)!x2n(<x<+)
1 1 − x \dfrac{1}{1-x} 1x1 1 + x + x 2 + . . . + x n + . . . 1+x+x^2+...+x^n+... 1+x+x2+...+xn+... ∑ n = 0 ∞ x n ( − 1 < x < 1 ) \sum\limits_{n=0}^∞x^n \qquad (-1<x<1) n=0xn(1<x<1)
1 1 + x \dfrac{1}{1+x} 1+x1 1 − x + x 2 + . . . + ( − 1 ) n x n + . . . 1-x+x^2+...+(-1)^nx^n+... 1x+x2+...+(1)nxn+... ∑ n = 0 ∞ ( − 1 ) n x n ( − 1 < x < 1 ) \sum\limits_{n=0}^∞(-1)^nx^n \qquad (-1<x<1) n=0(1)nxn(1<x<1)
ln ⁡ ( 1 + x ) \ln (1+x) ln(1+x) x − x 2 2 + x 3 3 + . . . + ( − 1 ) n x n n + . . . x-\dfrac{x^2}{2}+\dfrac{x^3}{3}+...+(-1)^n\dfrac{x^n}{n}+... x2x2+3x3+...+(1)nnxn+... ∑ n = 1 ∞ ( − 1 ) n − 1 x n n ( − 1 < x ≤ 1 ) \sum\limits_{n=1}^∞(-1)^{n-1}\dfrac{x^n}{n}\qquad (-1<x≤1) n=1(1)n1nxn(1<x1)
− ln ⁡ ( 1 − x ) -\ln (1-x) ln(1x) x + x 2 2 + x 3 3 + . . . + x n n + . . . = x+\dfrac{x^2}{2}+\dfrac{x^3}{3}+...+\dfrac{x^n}{n}+...= x+2x2+3x3+...+nxn+...= ∑ n = 1 ∞ x n n ( − 1 ≤ x < 1 ) \sum\limits_{n=1}^∞\dfrac{x^n}{n}\qquad (-1≤x<1) n=1nxn(1x<1)
arctan ⁡ x \arctan x arctanx x − x 3 3 + x 5 5 + . . . + ( − 1 ) n x n n + . . . x-\dfrac{x^3}{3}+\dfrac{x^5}{5}+...+(-1)^n\dfrac{x^n}{n}+... x3x3+5x5+...+(1)nnxn+... ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 ( − 1 ≤ x ≤ 1 ) \sum\limits_{n=0}^∞(-1)^n\dfrac{x^{2n+1}}{2n+1} \qquad(-1≤x≤1) n=0(1)n2n+1x2n+1(1x1)

特别的:对于 ln ⁡ ( 1 + x ) \ln(1+x) ln(1+x),令x=1,可得:
ln ⁡ 2 = 1 − 1 2 + 1 3 − 1 4 + . . . \ln2=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+... ln2=121+3141+...



2.函数f(x)展开为幂级数:函数→幂级数

函数→幂级数:
凑标杆:先求导或积分到标杆 1 1 − x \dfrac{1}{1-x} 1x1 的形式 (x可以为任意形式),以“标杆”为桥梁变成幂级数 ∑ n = 0 ∞ x n \sum\limits_{n=0}^{∞}x^n n=0xn (x可以为任意形式)。
凑题干:和分两项,尽力合并,注意题干是n=0还是n=1,努力把两项变一项,凑成题干的形式
求常数项级数:此时的求常数项级数,就是把幂级数中的x代入特定值。


(1)直接展开法

在这里插入图片描述


(2)间接展开法




例题1:01年13.
在这里插入图片描述

分析:

答案: π 4 − 1 2 \dfrac{π}{4}-\dfrac{1}{2} 4π21


例题2:
在这里插入图片描述


例题3:展开成ln[1+(x-1)],用泰勒级数
在这里插入图片描述


例题4:
在这里插入图片描述




3.求幂级数的和函数S(x):幂级数→函数

求和函数S(x),先要指出收敛的范围,即求收敛域

(1)换元 凑已知的泰勒级数


例题1:17年12.   积分消分子,凑标杆,再求导回来
在这里插入图片描述

分析:
在这里插入图片描述

答案: 1 ( 1 + x ) 2 \dfrac{1}{(1+x)²} (1+x)21



例题2:19年11.
在这里插入图片描述

分析:凑cosx的泰勒级数

答案: cos ⁡ x \cos\sqrt{x} cosx



例题3:23李林四(一)14.
在这里插入图片描述

分析:换元法
在这里插入图片描述
答案: x e x e x − 1 ( x > 0 ) \dfrac{xe^x}{e^x-1}(x>0) ex1xex(x>0)




(2)逐项求导、逐项积分求和函数 S(x)
标杆

(1)重要“标杆”: ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + . . . + x n + . . . = 1 1 − x ( − 1 < x < 1 ) \sum\limits_{n=0}^∞x^n=1+x+x²+x³+...+x^n+...=\dfrac{1}{1-x} \qquad (-1<x<1) n=0xn=1+x+x2+x3+...+xn+...=1x1(1<x<1)
(2)变形:
∑ n = 1 ∞ x n = x + x 2 + x 3 + . . . + x n + . . . = x 1 − x ( − 1 < x < 1 ) \sum\limits_{n=1}^∞x^n=x+x²+x³+...+x^n+...=\dfrac{x}{1-x} \qquad (-1<x<1) n=1xn=x+x2+x3+...+xn+...=1xx(1<x<1)

∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + . . . + ( − 1 ) n x n + . . . = 1 1 + x ( − 1 < x < 1 ) \sum\limits_{n=0}^∞(-1)^nx^n=1-x+x^2-x^3+...+(-1)^nx^n+...=\dfrac{1}{1+x} \qquad (-1<x<1) n=0(1)nxn=1x+x2x3+...+(1)nxn+...=1+x1(1<x<1)


(3)

(4)①有分子就先积分消分子,凑标杆为函数,再求导。
②有分母就先求导消分母,凑标杆为函数,再积分。
一次求导(到凑标杆),对应一次积分。两次求导(到凑标杆),对应两次积分
一次积分(到凑标杆),对应一次求导。两次积分(到凑标杆)。对应两次求导



例题1:看和哪一个公式比较接近。从右向左
在这里插入图片描述


例题2:
在这里插入图片描述


例题3:
在这里插入图片描述




(3)拆两项,分别求


例题1:24李林六(六)13.   构造幂级数求常数项级数、拆两项,分别求
在这里插入图片描述

分析:先整理,再换为幂级数代值
在这里插入图片描述

答案: 10 9 \dfrac{10}{9} 910


例题2:21年18.   逐项求导,只在开区间(-R,R)上成立,端点值要单独讨论
在这里插入图片描述

答案:
在这里插入图片描述


例题3:05年16.  求收敛区间、和函数
在这里插入图片描述

答案:




(4)构造微分方程求和函数 S(x)

含有常数项递推式,求和函数,一般是需要对S(x)求导,构造一阶线性微分方程,利用公式法求解 y=S(x)



例题1:20年17.
在这里插入图片描述

答案:





三、傅里叶级数

形如下式的级数叫做三角级数: a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π t l ) + b n sin ⁡ n π t l ) \dfrac{a_0}{2}+\sum\limits_{n=1}^∞(a_n\cos\frac{nπt}{l})+b_n\sin\frac{nπt}{l}) 2a0+n=1(ancoslt)+bnsinlt)
π t l = x \dfrac{πt}{l}=x lπt=x,三角级数可变为: a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x ) + b n sin ⁡ n x ) \dfrac{a_0}{2}+\sum\limits_{n=1}^∞(a_n\cos nx)+b_n\sin nx) 2a0+n=1(ancosnx)+bnsinnx)
这就把以 2 l 2l 2l 为周期的三角级数转换成以 2 π 2π 2π 为周期的三角级数。


1.傅里叶系数、傅里叶级数

周期为2π的傅里叶系数:
{ a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x ( n = 0 , 1 , 2 , . . . ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , . . . ) \left\{\begin{aligned} a_n=\frac{1}{π}\int_{-π}^{π}f(x)\cos nx{\rm d}x & \quad (n=0,1,2,...)\\ b_n=\frac{1}{π}\int_{-π}^{π}f(x)\sin nx{\rm d}x & \quad (n=1,2,...) \end{aligned}\right. an=π1ππf(x)cosnxdxbn=π1ππf(x)sinnxdx(n=0,1,2,...)(n=1,2,...)

傅里叶级数: f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞(a_n\cos nx+b_n\sin nx) f(x)=2a0+n=1(ancosnx+bnsinnx)

f 1 ( x ) = a 0 2 + a 1 cos ⁡ x + b 1 sin ⁡ x f_1(x)=\dfrac{a_0}{2}+a_1\cos x+b_1\sin x f1(x)=2a0+a1cosx+b1sinx
f n ( x ) = a 0 2 + ∑ k = 1 n ( a k cos ⁡ k x + b k sin ⁡ k x ) f_n(x)=\dfrac{a_0}{2}+\sum\limits_{k=1}^n(a_k\cos kx+b_k\sin kx) fn(x)=2a0+k=1n(akcoskx+bksinkx)


(1)正弦级数、余弦级数

奇函数的傅里叶级数是只含有正弦项的正弦级数 f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n x f(x)=\sum\limits_{n=1}^∞b_n\sin nx f(x)=n=1bnsinnx

偶函数的傅里叶级数是只含有余弦项的余弦级数 f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞a_n\cos nx f(x)=2a0+n=1ancosnx


证明:
①当 f ( x ) 为奇函数 f(x)为奇函数 f(x)为奇函数时, f ( x ) cos ⁡ n x f(x)\cos nx f(x)cosnx是奇函数, f ( x ) sin ⁡ n x f(x)\sin nx f(x)sinnx是偶函数,故
{ a n = 0 ( n = 0 , 1 , 2 , 3 , . . . ) b n = 2 π ∫ 0 π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , 3 , . . . ) \left\{\begin{aligned} a_n=0 \qquad \qquad \qquad \qquad (n=0,1,2,3,...)\\ b_n=\frac{2}{π}\int_0^{π}f(x)\sin nx{\rm d}x \quad (n=1,2,3,...) \end{aligned}\right. an=0(n=0,1,2,3,...)bn=π20πf(x)sinnxdx(n=1,2,3,...)
②当 f ( x ) 为偶函数 f(x)为偶函数 f(x)为偶函数时, f ( x ) cos ⁡ n x f(x)\cos nx f(x)cosnx是偶函数, f ( x ) sin ⁡ n x f(x)\sin nx f(x)sinnx是奇函数,故
{ a n = 2 π ∫ 0 π f ( x ) cos ⁡ n x d x ( n = 0 , 1 , 2 , 3 , . . . ) b n = 0 ( n = 1 , 2 , 3 , . . . ) \left\{\begin{aligned} a_n=\frac{2}{π}\int_0^{π}f(x)\cos nx{\rm d}x \qquad (n=0,1,2,3,...)\\ b_n =0 \qquad \qquad \qquad \qquad \quad \qquad (n=1,2,3,...) \end{aligned}\right. an=π20πf(x)cosnxdx(n=0,1,2,3,...)bn=0(n=1,2,3,...)



(2)周期为 2 l 2l 2l的周期函数的傅里叶级数: T = 2 l T=2l T=2l

设周期为 2 l 2l 2l的周期函数 f ( x ) f(x) f(x)满足收敛定理的条件,则它的傅里叶级数展开式为:
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π l x + b n sin ⁡ n π l x ) f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞(a_n\cos n\dfrac{π}{l}x+b_n\sin n\dfrac{π}{l}x) f(x)=2a0+n=1(ancosnlπx+bnsinnlπx)

其中 { a n = 1 l ∫ − l l f ( x ) cos ⁡ n π l x d x ( n = 0 , 1 , 2 , . . . ) b n = 1 l ∫ − l l f ( x ) sin ⁡ n π l x ( n = 1 , 2 , 3 , . . . ) \left\{\begin{aligned} a_n & = \dfrac{1}{l}\int_{-l}^lf(x)\cos n\dfrac{π}{l}xdx \quad (n=0,1,2,...) \\ b_n & =\dfrac{1}{l}\int_{-l}^lf(x)\sin n\dfrac{π}{l}x \quad (n=1,2,3,...) \end{aligned}\right. anbn=l1llf(x)cosnlπxdx(n=0,1,2,...)=l1llf(x)sinnlπx(n=1,2,3,...)


f ( x ) f(x) f(x)为奇函数时, f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n π l x f(x)=\sum\limits_{n=1}^∞b_n\sin n\dfrac{π}{l}x f(x)=n=1bnsinnlπx。其中 b n = 2 l ∫ 0 l f ( x ) sin ⁡ n π l x b_n=\dfrac{2}{l}\int_0^lf(x)\sin n\dfrac{π}{l}x bn=l20lf(x)sinnlπx
f ( x ) f(x) f(x)为偶函数时, f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n π l x f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞a_n\cos n\dfrac{π}{l}x f(x)=2a0+n=1ancosnlπx。其中 a n = 2 l ∫ 0 l f ( x ) cos ⁡ n π l x d x a_n=\dfrac{2}{l}\int_0^lf(x)\cos n\dfrac{π}{l}xdx an=l20lf(x)cosnlπxdx


(3)题型1:计算傅里叶系数


例题1:23年13.   计算傅里叶系数:周期为2l的周期函数的傅里叶级数
在这里插入图片描述

分析:
先求出 a n a_n an,再代入2n,求得 a 2 n = 0 a_{2n}=0 a2n=0,求和也是0

在这里插入图片描述

答案:0


例题2:24李林六(四)14.
在这里插入图片描述

分析:定积分平移公式/定积分区间变换公式
在这里插入图片描述

答案:0


例题3:03年3.
在这里插入图片描述

分析:

答案:1


例题4:1993年3.
在这里插入图片描述

分析:
在这里插入图片描述

答案: 2 3 π \dfrac{2}{3}π 32π


例题5:14年4.
在这里插入图片描述

分析:①傅里叶级数 ②直接计算积分 ③代入选项求积分比最小

答案:A





2.狄利克雷收敛定理

在这里插入图片描述

(1)奇延拓
(2)偶延拓
(3)周期延拓

周期延拓:从周期为[-π,π)或(-π,π] 延展为周期为2π的周期函数


(4)题型2:利用狄利克雷收敛定理求值


例题1:13年3.   奇延拓、周期延拓、狄利克雷收敛定理
在这里插入图片描述

分析:
步骤:关注f(x)、S(x)、bn的范围
①bn是在(0,1),画出f(x)在(0,1)上的图像
②S(x)是正弦级数,是奇函数的傅里叶展开,对f(x)进行奇延拓。再根据周期T=2,对f(x)进行周期延拓。
③根据狄利克雷收敛定理,计算S(x)

S ( − 9 4 ) = S ( − 9 4 + 2 ) = S ( − 1 4 ) = − S ( 1 4 ) = 连续点 狄利克雷收敛定理 − f ( 1 4 ) = − ∣ 1 4 − 1 2 ∣ = − 1 4 S(-\frac{9}{4})=S(-\frac{9}{4}+2)=S(-\frac{1}{4})=-S(\frac{1}{4})\xlongequal[连续点]{狄利克雷收敛定理}-f(\frac{1}{4})=-|\frac{1}{4}-\frac{1}{2}|=-\frac{1}{4} S(49)=S(49+2)=S(41)=S(41)狄利克雷收敛定理 连续点f(41)=4121=41

答案:C


例题2:99年选择3   偶延拓、周期延拓

在这里插入图片描述

分析:
S(x)是偶函数的傅里叶级数的和函数
画出f(x)图像,把f(x)进行偶延拓、周期延拓,周期为2
S ( − 5 2 ) = S ( − 5 2 + 2 ) = S ( − 1 2 ) = S ( 1 2 ) = 间断点 狄利克雷收敛定理 1 2 + 1 2 = 3 4 S(-\frac{5}{2})=S(-\frac{5}{2}+2)=S(-\frac{1}{2})=S(\frac{1}{2})\xlongequal[间断点]{狄利克雷收敛定理}\dfrac{\frac{1}{2}+1}{2}=\dfrac{3}{4} S(25)=S(25+2)=S(21)=S(21)狄利克雷收敛定理 间断点221+1=43

答案:C


例题3:23李林四(四)14.   周期延拓
在这里插入图片描述

分析:

答案: π 2 2 \dfrac{π^2}{2} 2π2


例题4:
在这里插入图片描述
分析:展开为正弦,奇延拓

答案:B




3.函数展开为傅里叶级数

(1)周期为 2 π 2π 2π的函数展开
①常规展开:[-π,π]上展开

在这里插入图片描述


②奇偶函数:[-π,π]上奇偶函数展开

③半个周期上展开为正弦:奇延拓,展开为余弦:偶延拓

奇延拓展开为正弦。把(0,π]上的奇函数延展为(-π,π]上的奇函数。
偶延拓展开为余弦。把(0,π]上的偶函数延展为(-π,π]上的偶函数
在这里插入图片描述



(2)周期为 2 l 2l 2l的函数展开

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞(a_n\cos\dfrac{nπx}{l}+b_n\sin\dfrac{nπx}{l}) f(x)=2a0+n=1(ancoslx+bnsinlx)


①常规展开: [ − l , l ] [-l,l] [l,l]上展开

在这里插入图片描述


[ − l , l ] [-l,l] [l,l]上奇、偶函数的展开

奇函数只有奇数项,只含sin,不含cos
偶函数只有偶数项,只含cos,不含sin
在这里插入图片描述


③半个周期上展开为正弦(奇延拓)或展开为余弦(偶延拓):在 [ 0 , l ] [0,l] [0,l]上展开为正弦或展为余弦

在这里插入图片描述


(3)题型3:计算傅里叶级数展开式

1.傅里叶级数:
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞(a_n\cos nx+b_n\sin nx) f(x)=2a0+n=1(ancosnx+bnsinnx)


2.余弦级数:
偶函数的傅里叶级数是只含有余弦项的余弦级数 f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞a_n\cos nx f(x)=2a0+n=1ancosnx


3.傅里叶系数
周期为2π的傅里叶系数:
{ a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x ( n = 0 , 1 , 2 , . . . ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , . . . ) \left\{\begin{aligned} a_n=\frac{1}{π}\int_{-π}^{π}f(x)\cos nx{\rm d}x & \quad (n=0,1,2,...)\\ b_n=\frac{1}{π}\int_{-π}^{π}f(x)\sin nx{\rm d}x & \quad (n=1,2,...) \end{aligned}\right. an=π1ππf(x)cosnxdxbn=π1ππf(x)sinnxdx(n=0,1,2,...)(n=1,2,...)



例题1:24李林四(三)12.   将函数展开成傅里叶级数
在这里插入图片描述

分析:
偶函数的傅里叶级数是只含有余弦项的余弦级数 f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x f(x)=\dfrac{a_0}{2}+\sum\limits_{n=1}^∞a_n\cos nx f(x)=2a0+n=1ancosnx。本题只需要求 a 0 a_0 a0 a n a_n an,即本质还是求傅里叶系数 a n a_n an

在这里插入图片描述

答案: π + 2 2 + ∑ n = 1 ∞ 2 n 2 π [ ( − 1 ) n − 1 ] cos ⁡ n x ( 0 ≤ x ≤ π ) \dfrac{π+2}{2}+\sum\limits_{n=1}^∞\dfrac{2}{n^2π}[(-1)^n-1]\cos nx \quad (0≤x≤π) 2π+2+n=1n2π2[(1)n1]cosnx(0xπ)

例题2:95年四((2)
在这里插入图片描述

分析:
在这里插入图片描述


例题3:91年五
在这里插入图片描述

分析:
在这里插入图片描述


  • 40
    点赞
  • 249
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论
### 回答1: 同济大学高等数学课件pan.baidu.com是一个非常实用的网站,它提供了大量的高等数学课件和相关学习资源,为同济大学的学生和其他高校学生提供了方便。该网站的课件内容非常详细、深入浅出,覆盖了数学的各个方面,包括解析几何、微积分、常微分方程等。 使用该网站的学生可以通过浏览和下载课件,快速了解和学习高等数学的知识点,提高自己的数学水平。同时,学生可以通过在线提问和讨论,与其他同学和老师交流学习经验和问题,增强了解决问题的能力和团队协作精神。 总的来说,同济大学高等数学课件pan.baidu.com是一个非常好的学习资源平台,不仅为同济大学的学生提供了便利,也为其他高校的学习人员提供了有价值的学习资料和思路。 ### 回答2: 同济大学的高等数学课件在百度网盘上的分享链接是pan.baidu.com/s/xxxxxxxxx(这里的xxxxxxxxx代表具体的分享码,需要自行获取)。这份课件包含了高等数学的多个模块,包括微积分学、线性代数、概率论和数理统计等。课件以PPT的形式呈现,主要是讲解各个数学概念和定理,其中配有丰富的图表和符号,便于学生理解。此外,课件还附有配套的习题和解答,学生可以通过自主练习深入理解数学的知识点。 同济大学的高等数学课件具有内容全面、讲解详细、图文并茂的特点。对于学习高等数学的学生来说,这份课件不仅可以帮助他们理解复杂的数学知识点,也能够拓展他们的数学思维和解题能力。同时,这份课件还得到了同济大学的数学教师团队的认可,可以说是一份不可多得的高质量学习资源。因此,建议有需要的同学可以通过上述分享链接进行下载和学习。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱德华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值