张宇1000题高等数学 第十六章 无穷级数

目录

A A A

7.设 0 ⩽ u n ⩽ 1 n 0\leqslant u_n\leqslant\cfrac{1}{n} 0unn1,则下列级数一定收敛的是(  )。
( A ) ∑ n = 1 ∞ u n ; (A)\displaystyle\sum\limits_{n=1}^\infty u_n; (A)n=1un;
( B ) ∑ n = 1 ∞ ( − 1 ) n u n ; (B)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n; (B)n=1(1)nun;
( C ) ∑ n = 1 ∞ u n ; (C)\displaystyle\sum\limits_{n=1}^\infty\sqrt{u_n}; (C)n=1un ;
( D ) ∑ n = 1 ∞ ( − 1 ) n u n 2 . (D)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2. (D)n=1(1)nun2.

  如 ∑ n = 1 ∞ 1 n \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n} n=1n1 ( A ) , ( C ) (A),(C) (A),(C)错误。
  如 ∑ n = 1 ∞ ( − 1 ) n + 1 2 n \displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n+1}{2n} n=12n(1)n+1 ( B ) (B) (B)错误。
  因 0 ⩽ u n ⩽ 1 n 0\leqslant u_n\leqslant\cfrac{1}{n} 0unn1,有 u n 2 ⩽ 1 n 2 u_n^2\leqslant\cfrac{1}{n^2} un2n21,而 ∑ n = 1 ∞ 1 n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2} n=1n21收敛,由正项级数的比较判别法知, ∑ n = 1 ∞ u n 2 \displaystyle\sum\limits_{n=1}^\infty u_n^2 n=1un2收敛,故 ∑ n = 1 ∞ ( − 1 ) n u n 2 \displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2 n=1(1)nun2绝对收敛,从而收敛,故选 ( D ) (D) (D)。(这道题主要利用了反例求解

20.判别下列正项级数的敛散性。

(3) ∑ n = 1 ∞ ( n + 1 3 − n 3 ) . \displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n}). n=1(3n+1 3n ).


n + 1 3 − n 3 = 1 ( n + 1 ) 2 3 + n ( n + 1 ) 3 + n 2 3 ⩾ 1 3 ( n + 1 ) 2 3 \sqrt[3]{n+1}-\sqrt[3]{n}=\cfrac{1}{\sqrt[3]{(n+1)^2}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^2}}\geqslant\cfrac{1}{3\sqrt[3]{(n+1)^2}} 3n+1 3n =3(n+1)2 +3n(n+1) +3n2 133(n+1)2 1
  又 ∑ n = 1 ∞ 1 ( n + 1 ) 2 3 = ∑ n = 2 ∞ 1 n 2 3 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{(n+1)^{\frac{2}{3}}}=\displaystyle\sum\limits_{n=2}^\infty\cfrac{1}{n^{\frac{2}{3}}} n=1(n+1)321=n=2n321发散,由比较判别法知, ∑ n = 1 ∞ ( n + 1 3 − n 3 ) \displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n}) n=1(3n+1 3n )发散。(这道题主要利用了分子有理化求解

21.设级数 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1an条件收敛,判别级数 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1nan(x1)n在点 x 1 = 3 , x 2 = 3 x_1=\sqrt{3},x_2=3 x1=3 ,x2=3处的收敛性。

  由题设条件 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1an收敛,可知 ∑ n = 1 ∞ a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n n=1anxn的收敛半径 R = 1 R=1 R=1。若 R < 1 R<1 R<1,则 ∑ n = 1 ∞ a n x n ∣ x = 1 = ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n n=1anxnx=1=n=1an发散,与已知矛盾;若 R > 1 R>1 R>1,则 ∑ n = 1 ∞ a n x n ∣ x = 1 = ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n n=1anxnx=1=n=1an绝对收敛,与已知矛盾。
  由于 ∑ n = 1 ∞ n a n x n = x ∑ n = 1 ∞ n a n x x − 1 = x ∑ n = 1 ∞ ( a n x n ) ′ \displaystyle\sum\limits_{n=1}^\infty na_nx^n=x\displaystyle\sum\limits_{n=1}^\infty na_nx^{x-1}=x\displaystyle\sum\limits_{n=1}^\infty(a_nx^n)' n=1nanxn=xn=1nanxx1=xn=1(anxn)的收敛半径与 ∑ n = 1 ∞ a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n n=1anxn收敛半径相同,即 R = 1 R=1 R=1,收敛区间为 ( − 1 , 1 ) (-1,1) (1,1)
  当 x 1 = 3 x_1=\sqrt{3} x1=3 时,考察 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1nan(x1)n,由于 ∣ 3 − 1 ∣ < 1 |\sqrt3-1|<1 3

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值