张宇1000题高等数学 第十六章 无穷级数

目录

A A A

7.设 0 ⩽ u n ⩽ 1 n 0\leqslant u_n\leqslant\cfrac{1}{n} 0unn1,则下列级数一定收敛的是(  )。
( A ) ∑ n = 1 ∞ u n ; (A)\displaystyle\sum\limits_{n=1}^\infty u_n; (A)n=1un;
( B ) ∑ n = 1 ∞ ( − 1 ) n u n ; (B)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n; (B)n=1(1)nun;
( C ) ∑ n = 1 ∞ u n ; (C)\displaystyle\sum\limits_{n=1}^\infty\sqrt{u_n}; (C)n=1un ;
( D ) ∑ n = 1 ∞ ( − 1 ) n u n 2 . (D)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2. (D)n=1(1)nun2.

  如 ∑ n = 1 ∞ 1 n \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n} n=1n1 ( A ) , ( C ) (A),(C) (A),(C)错误。
  如 ∑ n = 1 ∞ ( − 1 ) n + 1 2 n \displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n+1}{2n} n=12n(1)n+1 ( B ) (B) (B)错误。
  因 0 ⩽ u n ⩽ 1 n 0\leqslant u_n\leqslant\cfrac{1}{n} 0unn1,有 u n 2 ⩽ 1 n 2 u_n^2\leqslant\cfrac{1}{n^2} un2n21,而 ∑ n = 1 ∞ 1 n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2} n=1n21收敛,由正项级数的比较判别法知, ∑ n = 1 ∞ u n 2 \displaystyle\sum\limits_{n=1}^\infty u_n^2 n=1un2收敛,故 ∑ n = 1 ∞ ( − 1 ) n u n 2 \displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2 n=1(1)nun2绝对收敛,从而收敛,故选 ( D ) (D) (D)。(这道题主要利用了反例求解

20.判别下列正项级数的敛散性。

(3) ∑ n = 1 ∞ ( n + 1 3 − n 3 ) . \displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n}). n=1(3n+1 3n ).


n + 1 3 − n 3 = 1 ( n + 1 ) 2 3 + n ( n + 1 ) 3 + n 2 3 ⩾ 1 3 ( n + 1 ) 2 3 \sqrt[3]{n+1}-\sqrt[3]{n}=\cfrac{1}{\sqrt[3]{(n+1)^2}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^2}}\geqslant\cfrac{1}{3\sqrt[3]{(n+1)^2}} 3n+1 3n =3(n+1)2 +3n(n+1) +3n2 133(n+1)2 1
  又 ∑ n = 1 ∞ 1 ( n + 1 ) 2 3 = ∑ n = 2 ∞ 1 n 2 3 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{(n+1)^{\frac{2}{3}}}=\displaystyle\sum\limits_{n=2}^\infty\cfrac{1}{n^{\frac{2}{3}}} n=1(n+1)321=n=2n321发散,由比较判别法知, ∑ n = 1 ∞ ( n + 1 3 − n 3 ) \displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n}) n=1(3n+1 3n )发散。(这道题主要利用了分子有理化求解

21.设级数 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1an条件收敛,判别级数 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1nan(x1)n在点 x 1 = 3 , x 2 = 3 x_1=\sqrt{3},x_2=3 x1=3 ,x2=3处的收敛性。

  由题设条件 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1an收敛,可知 ∑ n = 1 ∞ a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n n=1anxn的收敛半径 R = 1 R=1 R=1。若 R < 1 R<1 R<1,则 ∑ n = 1 ∞ a n x n ∣ x = 1 = ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n n=1anxnx=1=n=1an发散,与已知矛盾;若 R > 1 R>1 R>1,则 ∑ n = 1 ∞ a n x n ∣ x = 1 = ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n n=1anxnx=1=n=1an绝对收敛,与已知矛盾。
  由于 ∑ n = 1 ∞ n a n x n = x ∑ n = 1 ∞ n a n x x − 1 = x ∑ n = 1 ∞ ( a n x n ) ′ \displaystyle\sum\limits_{n=1}^\infty na_nx^n=x\displaystyle\sum\limits_{n=1}^\infty na_nx^{x-1}=x\displaystyle\sum\limits_{n=1}^\infty(a_nx^n)' n=1nanxn=xn=1nanxx1=xn=1(anxn)的收敛半径与 ∑ n = 1 ∞ a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n n=1anxn收敛半径相同,即 R = 1 R=1 R=1,收敛区间为 ( − 1 , 1 ) (-1,1) (1,1)
  当 x 1 = 3 x_1=\sqrt{3} x1=3 时,考察 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1nan(x1)n,由于 ∣ 3 − 1 ∣ < 1 |\sqrt3-1|<1 3 1<1,因此 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1nan(x1)n x 1 = 3 x_1=\sqrt{3} x1=3 处绝对收敛;
  当 x 2 = 3 x_2=3 x2=3时,考察 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1nan(x1)n,由于 ∣ 3 − 1 ∣ > 1 |3-1|>1 31>1,因此 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1nan(x1)n x 2 = 3 x_2=3 x2=3处发散。(这道题主要利用了分类讨论求解

B B B

2.下列命题正确的是(  )。
( A ) (A) (A) u n < v n ( n = 1 , 2 , 3 , ⋯   ) u_n<v_n(n=1,2,3,\cdots) un<vn(n=1,2,3,),则 ∑ n = 1 ∞ u n ⩽ ∑ n = 1 ∞ v n \displaystyle\sum\limits_{n=1}^\infty u_n\leqslant\displaystyle\sum\limits_{n=1}^\infty v_n n=1unn=1vn
( B ) (B) (B) u n < v n ( n = 1 , 2 , 3 , ⋯   ) u_n<v_n(n=1,2,3,\cdots) un<vn(n=1,2,3,) ∑ n = 1 ∞ v n \displaystyle\sum\limits_{n=1}^\infty v_n n=1vn收敛,则 ∑ n = 1 ∞ u n \displaystyle\sum\limits_{n=1}^\infty u_n n=1un收敛;
( C ) (C) (C) lim ⁡ n → ∞ u n v n = 1 \lim\limits_{n\to\infty}\cfrac{u_n}{v_n}=1 nlimvnun=1 ∑ n = 1 ∞ v n \displaystyle\sum\limits_{n=1}^\infty v_n n=1vn收敛,则 ∑ n = 1 ∞ u n \displaystyle\sum\limits_{n=1}^\infty u_n n=1un收敛;
( D ) (D) (D) w n < u n < v n ( n = 1 , 2 , 3 , ⋯   ) w_n<u_n<v_n(n=1,2,3,\cdots) wn<un<vn(n=1,2,3,) ∑ n = 1 ∞ w n \displaystyle\sum\limits_{n=1}^\infty w_n n=1wn ∑ n = 1 ∞ v n \displaystyle\sum\limits_{n=1}^\infty v_n n=1vn收敛,则 ∑ n = 1 ∞ u n \displaystyle\sum\limits_{n=1}^\infty u_n n=1un收敛。

  因为只有当级数收敛时,才能比较其和的大小,故 ( A ) (A) (A)错误。
  若取级数 ∑ n = 1 ∞ ( − 1 n ) \displaystyle\sum\limits_{n=1}^\infty\left(-\cfrac{1}{n}\right) n=1(n1) ∑ n = 1 ∞ 1 n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2} n=1n21,可见 ( B ) (B) (B)错误。
  若取级数 ∑ n = 1 ∞ ( − 1 ) n n \displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n}{\sqrt{n}} n=1n (1)n ∑ n = 1 ∞ [ ( − 1 ) n n + 1 n ] \displaystyle\sum\limits_{n=1}^\infty\left[\cfrac{(-1)^n}{\sqrt{n}}+\cfrac{1}{n}\right] n=1[n (1)n+n1],可见 ( C ) (C) (C)错误。
  故选 ( D ) (D) (D)。(这道题主要利用了反例求解

C C C

6.设函数 f n ( x ) = ∫ 0 x t ( 1 − t ) sin ⁡ 2 n t d t ( x > 0 ) f_n(x)=\displaystyle\int^x_0t(1-t)\sin^{2n}t\mathrm{d}t(x>0) fn(x)=0xt(1t)sin2ntdt(x>0),其中 n n n为正整数。

(1)证明 f n ( x ) f_n(x) fn(x)在区间 ( 0 , + ∞ ) (0,+\infty) (0,+)上存在最大值;

  由 f n ′ ( x ) = x ( 1 − x ) sin ⁡ 2 n x = 0 f'_n(x)=x(1-x)\sin^{2n}x=0 fn(x)=x(1x)sin2nx=0,解得函数 f n ( x ) f_n(x) fn(x) ( 0 , + ∞ ) (0,+\infty) (0,+)内的所有驻点为 x 0 = 1 x_0=1 x0=1 x k = k π , k = 1 , 2 , ⋯ x_k=k\pi,k=1,2,\cdots xk=kπ,k=1,2,。易知, x 0 = 1 x_0=1 x0=1 f n ( x ) f_n(x) fn(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上的唯一极值点且为极大值点,所以 f n ( 1 ) f_n(1) fn(1) f n ( x ) f_n(x) fn(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上的最大值。

(2)记 a n a_n an为函数 f n ( x ) f_n(x) fn(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上的最大值 ( n ⩾ 1 ) (n\geqslant1) (n1),证明级数 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1an收敛。

  因为 a n = f n ( 1 ) = ∫ 0 1 t ( 1 − t ) sin ⁡ 2 n t d t ( n ⩾ 1 ) a_n=f_n(1)=\displaystyle\int^1_0t(1-t)\sin^{2n}t\mathrm{d}t(n\geqslant1) an=fn(1)=01t(1t)sin2ntdt(n1),且当 0 ⩽ t ⩽ π 2 0\leqslant t\leqslant\cfrac{\pi}{2} 0t2π时有 sin ⁡ t ⩽ t \sin t\leqslant t sintt,所以 0 ⩽ a n ⩽ ∫ 0 1 t ( 1 − t ) t 2 n d t = ∫ 0 1 t 2 n + 1 d t − ∫ 0 1 t 2 n + 2 d t = 1 2 n + 2 − 1 2 n + 3 ⩽ 1 n 2 0\leqslant a_n\leqslant\displaystyle\int^1_0t(1-t)t^{2n}\mathrm{d}t=\displaystyle\int^1_0t^{2n+1}\mathrm{d}t-\displaystyle\int^1_0t^{2n+2}\mathrm{d}t=\cfrac{1}{2n+2}-\cfrac{1}{2n+3}\leqslant\cfrac{1}{n^2} 0an01t(1t)t2ndt=01t2n+1dt01t2n+2dt=2n+212n+31n21。利用比较判别法,由 ∑ n = 1 ∞ 1 n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2} n=1n21收敛可知,级数 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1an收敛。(这道题主要利用了放缩法求解

7.

(1)设 f ( x ) f(x) f(x)为任意阶可导函数,且 f ( x ) = ∑ n = 1 ∞ a n x n f(x)=\displaystyle\sum\limits_{n=1}^\infty a_nx^n f(x)=n=1anxn,若 f ( x ) f(x) f(x)为奇函数,证明 f ( x ) = ∑ n = 1 ∞ a 2 n − 1 x 2 n − 1 f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1} f(x)=n=1a2n1x2n1

  由 f ( x ) f(x) f(x)为奇函数,即 f ( x ) = − f ( − x ) f(x)=-f(-x) f(x)=f(x),于是有 ∑ n = 1 ∞ a n x n = − ∑ n = 1 ∞ a n ( − x ) n = ∑ n = 1 ∞ ( − 1 ) n + 1 a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n=-\displaystyle\sum\limits_{n=1}^\infty a_n(-x)^n=\displaystyle\sum\limits_{n=1}^\infty(-1)^{n+1}a_nx^n n=1anxn=n=1an(x)n=n=1(1)n+1anxn,比较两端 x x x同次项系数,得 a n = ( − 1 ) n + 1 a n a_n=(-1)^{n+1}a_n an=(1)n+1an
  当 n = 2 k n=2k n=2k为偶数时, a 2 k = − a 2 k a_{2k}=-a_{2k} a2k=a2k,则 a 2 k = 0 , k = 0 , 1 , 2 , ⋯ a_{2k}=0,k=0,1,2,\cdots a2k=0,k=0,1,2,
  当 n = 2 k − 1 n=2k-1 n=2k1为奇数时, a 2 k − 1 = a 2 k − 1 , k = 1 , 2 , ⋯ a_{2k-1}=a_{2k-1},k=1,2,\cdots a2k1=a2k1,k=1,2,
  综上可知, f ( x ) = ∑ k = 1 ∞ a 2 k − 1 x 2 k − 1 f(x)=\displaystyle\sum\limits_{k=1}^\infty a_{2k-1}x^{2k-1} f(x)=k=1a2k1x2k1,亦可写成 f ( x ) = ∑ n = 1 ∞ a 2 n − 1 x 2 n − 1 f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1} f(x)=n=1a2n1x2n1

(2)将函数 f ( x ) = ∫ 0 x e x 2 − t 2 d t f(x)=\displaystyle\int^x_0e^{x^2-t^2}\mathrm{d}t f(x)=0xex2t2dt展开为 x x x的幂级数。

   f ( x ) = e x 2 ⋅ ∫ 0 x e − t 2 d t f(x)=e^{x^2}\cdot\displaystyle\int^x_0e^{-t^2}\mathrm{d}t f(x)=ex20xet2dt为奇函数,由 ( 1 ) (1) (1),设 f ( x ) = ∑ n = 1 ∞ a 2 n − 1 x 2 n − 1 f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1} f(x)=n=1a2n1x2n1
  对求导 f ( x ) = ∫ 0 x e x 2 − t 2 d t f(x)=\displaystyle\int^x_0e^{x^2-t^2}\mathrm{d}t f(x)=0xex2t2dt,得 f ′ ( x ) = 2 x f ( x ) + 1 f'(x)=2xf(x)+1 f(x)=2xf(x)+1,即 ∑ n = 1 ∞ ( 2 n − 1 ) a 2 n − 1 x 2 n − 2 = ∑ n = 1 ∞ 2 a 2 n − 1 x 2 n + 1 \displaystyle\sum\limits_{n=1}^\infty(2n-1)a_{2n-1}x^{2n-2}=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1 n=1(2n1)a2n1x2n2=n=12a2n1x2n+1,也即 ∑ n = 1 ∞ ( 2 n + 1 ) a 2 n + 1 x 2 n + a 1 = ∑ n = 1 ∞ 2 a 2 n − 1 x 2 n + 1 \displaystyle\sum\limits_{n=1}^\infty(2n+1)a_{2n+1}x^{2n}+a_1=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1 n=1(2n+1)a2n+1x2n+a1=n=12a2n1x2n+1
  比较两端同次项系数,得 a 1 = 1 a_1=1 a1=1,于是
a 2 n + 1 = 2 2 n + 1 a 2 n − 1 = 2 2 n + 1 ⋅ 2 2 n − 1 a 2 n − 3 = ⋯ = 2 2 n + 1 ⋅ 2 2 n − 1 ⋅ ⋯ ⋅ 2 3 ⋅ a 1 = 2 n ( 2 n + 1 ) ! ! . \begin{aligned} a_{2n+1}&=\cfrac{2}{2n+1}a_{2n-1}=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}a_{2n-3}=\cdots\\ &=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}\cdot\cdots\cdot\cfrac{2}{3}\cdot a_1=\cfrac{2^n}{(2n+1)!!}. \end{aligned} a2n+1=2n+12a2n1=2n+122n12a2n3==2n+122n1232a1=(2n+1)!!2n.
  故 f ( x ) = x + ∑ n = 1 ∞ 2 n ( 2 n + 1 ) ! ! x 2 n + 1 , x ∈ ( − ∞ , + ∞ ) f(x)=x+\displaystyle\sum\limits_{n=1}^\infty\cfrac{2^n}{(2n+1)!!}x^{2n+1},x\in(-\infty,+\infty) f(x)=x+n=1(2n+1)!!2nx2n+1,x(,+)。(这道题主要利用了微分方程求解

9.设 x > 2 x>2 x>2,证明 ln ⁡ x + 2 x − 2 = ln ⁡ ( x + 1 x − 1 ) 2 + 2 ∑ n = 1 ∞ 1 2 n − 1 ( 2 x 3 − 3 x ) 2 n − 1 \ln\cfrac{x+2}{x-2}=\ln\left(\cfrac{x+1}{x-1}\right)^2+2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}\left(\cfrac{2}{x^3-3x}\right)^{2n-1} lnx2x+2=ln(x1x+1)2+2n=12n11(x33x2)2n1

  令 S ( u ) = ∑ n = 1 ∞ 1 2 n − 1 u 2 n − 1 S(u)=\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}u^{2n-1} S(u)=n=12n11u2n1,于是当 ∣ u ∣ < 1 |u|<1 u<1时,有 S ( u ) = S ( 0 ) + ∫ 0 u S ′ ( t ) d t = ∫ 0 u ( ∑ n = 1 ∞ 1 2 n − 1 t 2 n − 1 ) d t = ∫ 0 u ∑ n = 1 ∞ t 2 n − 2 d t = ∫ 0 u 1 1 − t 2 d t = 1 2 ln ⁡ 1 + u 1 − u S(u)=S(0)+\displaystyle\int^u_0S'(t)\mathrm{d}t=\displaystyle\int^u_0\left(\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}t^{2n-1}\right)\mathrm{d}t=\displaystyle\int^u_0\displaystyle\sum\limits_{n=1}^\infty t^{2n-2}\mathrm{d}t=\displaystyle\int^u_0\cfrac{1}{1-t^2}\mathrm{d}t=\cfrac{1}{2}\ln\cfrac{1+u}{1-u} S(u)=S(0)+0uS(t)dt=0u(n=12n11t2n1)dt=0un=1t2n2dt=0u1t21dt=21ln1u1+u。代入 u = 2 x 3 − 3 x u=\cfrac{2}{x^3-3x} u=x33x2,故 ∑ n = 1 ∞ 1 2 n − 1 ( 2 x 3 − 3 x ) 2 n − 1 = 1 2 ln ⁡ ( x + 2 ) ( x − 1 ) 2 ( x + 1 ) 2 ( x − 2 ) ( x > 2 ) \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}\left(\cfrac{2}{x^3-3x}\right)^{2n-1}=\cfrac{1}{2}\ln\cfrac{(x+2)(x-1)^2}{(x+1)^2(x-2)}(x>2) n=12n11(x33x2)2n1=21ln(x+1)2(x2)(x+2)(x1)2(x>2)。(这道题主要利用了幂级数展开求解

10.设 b n > 0 b_n>0 bn>0,当 n ⩾ 2 n\geqslant2 n2时, b n = b n − 1 + ( n − 1 ) b n − 2 , b 0 = b 1 = 1 b_n=b_{n-1}+(n-1)b_{n-2},b_0=b_1=1 bn=bn1+(n1)bn2,b0=b1=1 b n b n − 1 \cfrac{b_n}{b_{n-1}} bn1bn有界,求 ∑ n = 1 ∞ b n x n n ! \displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^n}{n!} n=1bnn!xn的和函数。

  记 a n = b n n ! a_n=\cfrac{b_n}{n!} an=n!bn,则 lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = lim ⁡ n → ∞ ∣ b n + 1 ( n + 1 ) ! ⋅ n ! b n ∣ = lim ⁡ n → ∞ ∣ 1 n + 1 ⋅ b n + 1 b n ∣ = 0 \lim\limits_{n\to\infty}\left|\cfrac{a_{n+1}}{a_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{b_{n+1}}{(n+1)!}\cdot\cfrac{n!}{b_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{1}{n+1}\cdot\cfrac{b_{n+1}}{b_n}\right|=0 nlimanan+1=nlim(n+1)!bn+1bnn!=nlimn+11bnbn+1=0,故收敛区间为 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)。又记 S ( x ) = ∑ n = 1 ∞ b n x n n ! S(x)=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^n}{n!} S(x)=n=1bnn!xn,则
S ′ ( x ) = ∑ n = 1 ∞ b n x n − 1 ( n − 1 ) ! = b 1 + ∑ n = 2 ∞ [ b n − 1 + ( n − 1 ) b n − 2 ] x n − 1 ( n − 1 ) ! = ∑ n = 1 ∞ b n − 1 x n − 1 ( n − 1 ) ! + ∑ n = 2 ∞ b n − 2 x n − 2 ( n − 2 ) ! ⋅ x = ∑ n = 0 ∞ b n x n n ! + x ⋅ ∑ n = 0 ∞ b n x n n ! \begin{aligned} S'(x)&=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^{n-1}}{(n-1)!}=b_1+\displaystyle\sum\limits_{n=2}^\infty[b_{n-1}+(n-1)b_{n-2}]\cfrac{x^{n-1}}{(n-1)!}\\ &=\displaystyle\sum\limits_{n=1}^\infty b_{n-1}\cfrac{x^{n-1}}{(n-1)!}+\displaystyle\sum\limits_{n=2}^\infty b_{n-2}\cfrac{x^{n-2}}{(n-2)!}\cdot x=\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!}+x\cdot\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!} \end{aligned} S(x)=n=1bn(n1)!xn1=b1+n=2[bn1+(n1)bn2](n1)!xn1=n=1bn1(n1)!xn1+n=2bn2(n2)!xn2x=n=0bnn!xn+xn=0bnn!xn
  于是 S ′ ( x ) S ( x ) = 1 + x \cfrac{S'(x)}{S(x)}=1+x S(x)S(x)=1+x,即 ∫ 1 S ( x ) d [ S ( x ) ] = ∫ ( 1 + x ) d x \displaystyle\int\cfrac{1}{S(x)}\mathrm{d}[S(x)]=\displaystyle\int(1+x)\mathrm{d}x S(x)1d[S(x)]=(1+x)dx,得 ln ⁡ ∣ S ( x ) ∣ = x + x 2 2 + ln ⁡ C 1 \ln|S(x)|=x+\cfrac{x^2}{2}+\ln C_1 lnS(x)=x+2x2+lnC1,也即得 S ( x ) = ± C 1 e x + x 2 2 = C e x + x 2 2 S(x)=\pm C_1e^{x+\frac{x^2}{2}}=Ce^{x+\frac{x^2}{2}} S(x)=±C1ex+2x2=Cex+2x2,又 S ( 0 ) = 1 S(0)=1 S(0)=1,故 C = 1 C=1 C=1,于是 S ( x ) = e x + x 2 2 , x ∈ ( − ∞ , + ∞ ) S(x)=e^{x+\frac{x^2}{2}},x\in(-\infty,+\infty) S(x)=ex+2x2,x(,+)。(这道题主要利用了微分方程求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值