毕业设计 : 中文文本分类 ( 机器学习 和 深度学习 ) - 新闻分类 情感分类 垃圾邮件分类

0 简介

今天学长向大家介绍一个毕设项目,中文文本分类技术

中文文本分类 ( 机器学习 和 深度学习 ) - 新闻分类 情感分类 垃圾邮件分类

1 前言

学长今天帮助同学开发项目,正好需要到文本分类,今天就带大家梳理一下中文文本分类的主要方法和流程

学长本片博客的目的主要记录学长自己构建文本分类系统的过程,分别构建基于传统机器学习的文本分类和基于深度学习的文本分类系统,并在同一数据集上进行测试。

2 中文文本分类

作为NLP领域最经典的场景之一,文本分类积累了大量的技术实现方法,如果将是否使用深度学习技术作为标准来衡量,实现方法大致可以分成两类:

  • 基于传统机器学习的文本分类
  • 基于深度学习的文本分类

facebook之前开源的fastText属于简化版的第二类,词向量取平均直接进softmax层,还有业界研究上使用比较多的TextCNN模型属于第二类。

学长本片博客的目的主要记录学长自己构建文本分类系统的过程,分别构建基于传统机器学习的文本分类和基于深度学习的文本分类系统,并在同一数据集上进行测试。

经典的机器学习方法采用获取tf-idf文本特征,分别喂入logistic regression分类器和随机森林分类器的思路,并对两种方法做性能对比。

基于深度学习的文本分类,这里主要采用CNN对文本分类,考虑到RNN模型相较CNN模型性能差异不大并且耗时还比较久,这里就不多做实验了。

实验过程有些比较有用的small trick分享,包括多进程分词、训练全量tf-idf、python2对中文编码的处理技巧等等,在下文都会仔细介绍。

3 数据集准备

本文采用的数据集是很流行的搜狗新闻数据集,get到的时候已经是经过预处理的了,所以省去了很多数据预处理的麻烦,数据集内容如下

在这里插入图片描述

数据集一共包括10类新闻,每类新闻65000条文本数据,训练集50000条,测试集10000条,验证集5000条。

4 经典机器学习方法

4.1 分词、去停用词

使用短文本分类博文中提到的分词工具类,对训练集、测试集、验证集进行多进程分词,以节省时间:

import multiprocessing


tmp_catalog = '/home/zhouchengyu/haiNan/textClassifier/data/cnews/'
file_list = [tmp_catalog+'cnews.train.txt', tmp_catalog+'cnews.test.txt']
write_list = [tmp_catalog+'train_token.txt', tmp_catalog+'test_token.txt']

def tokenFile(file_path, write_path):
    word_divider = WordCut()
    with open(write_path, 'w') as w:
        with open(file_path, 'r') as f:
            for line in f.readlines():
                line = line.decode('utf-8').strip()
                token_sen = word_divider.seg_sentence(line.split('\t')[1])
                w.write(line.split('\t')[0].encode('utf-8') + '\t' + token_sen.encode('utf-8') + '\n') 
    print file_path + ' has been token and token_file_name is ' + write_path

pool = multiprocessing.Pool(processes=4)
for file_path, write_path in zip(file_list, write_list):
    pool.apply_async(tokenFile, (file_path, write_path, ))
pool.close()
pool.join() # 调用join()之前必须先调用close()
print "Sub-process(es) done."

4.2 文本向量化 tf-idf

这里有几点需要注意的,一是计算tf-idf是全量计算,所以需要将train+test+val的所有corpus都相加,再进行计算,二是为了防止文本特征过大,需要去低频词,因为是在jupyter上写的,所以测试代码的时候,先是选择最小的val数据集,成功后,再对test,train数据集迭代操作,希望不要给大家留下代码冗余的影响…[悲伤脸]。实现代码如下:

def constructDataset(path):
    """
    path: file path
    rtype: lable_list and corpus_list
    """
    label_list = []
    corpus_list = []
    with open(path, 'r') as p:
        for line in p.readlines():
            label_list.append(line.split('\t')[0])
            corpus_list.append(line.split('\t')[1])
    return label_list, corpus_list
    
tmp_catalog = '/home/zhouchengyu/haiNan/textClassifier/data/cnews/'
file_path = 'val_token.txt'
val_label, val_set = constructDataset(tmp_catalog+file_path)
print len(val_set)

from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer


tmp_catalog = '/home/zhouchengyu/haiNan/textClassifier/data/cnews/'
write_list = [tmp_catalog+'train_token.txt', tmp_catalog+'test_token.txt']

tarin_label, train_set = constructDataset(write_list[0]) # 50000
test_label, test_set = constructDataset(write_list[1]) # 10000
# 计算tf-idf
corpus_set = train_set + val_set + test_set # 全量计算tf-idf
print "length of corpus is: " + str(len(corpus_set))
vectorizer = CountVectorizer(min_df=1e-5) # drop df < 1e-5,去低频词
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus_set))
words = vectorizer.get_feature_names()
print "how many words: {0}".format(len(words))
print "tf-idf shape: ({0},{1})".format(tfidf.shape[0], tfidf.shape[1])

"""
length of corpus is: 65000
how many words: 379000
tf-idf shape: (65000,379000)
"""

4.3 构建训练和测试数据

因为本来文本就是以一定随机性抽取成3份数据集的,所以,这里就不shuffle啦,偷懒一下下。

from sklearn import preprocessing

# encode label
corpus_label = tarin_label + val_label + test_label
encoder = preprocessing.LabelEncoder()
corpus_encode_label = encoder.fit_transform(corpus_label)
train_label = corpus_encode_label[:50000]
val_label = corpus_encode_label[50000:55000]
test_label = corpus_encode_label[55000:]
# get tf-idf dataset
train_set = tfidf[:50000]
val_set = tfidf[50000:55000]
test_set = tfidf[55000:]

4.4 训练分类器

4.4.1 logistic regression分类器

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# from sklearn.metrics import confusion_matrix

# LogisticRegression classiy model
lr_model = LogisticRegression()
lr_model.fit(train_set, train_label)
print "val mean accuracy: {0}".format(lr_model.score(val_set, val_label))
y_pred = lr_model.predict(test_set)
print classification_report(test_label, y_pred)

分类结果如下(包括准确率、召回率、F1值):

在这里插入图片描述

4.5 Random Forest 分类器

# 随机森林分类器
from sklearn.ensemble import RandomForestClassifier    


rf_model = RandomForestClassifier(n_estimators=200, random_state=1080)
rf_model.fit(train_set, train_label)
print "val mean accuracy: {0}".format(rf_model.score(val_set, val_label))
y_pred = rf_model.predict(test_set)
print classification_report(test_label, y_pred)

分类结果(包括准确率、召回率、F1值):

在这里插入图片描述

4.6 结论

  • 1 上面采用逻辑回归分类器和随机森林分类器做对比:
  • 2 可以发现,除了个别分类随机森林方法有较大进步,大部分都差于逻辑回归分类器
  • 3 并且200棵树的随机森林耗时过长,比起逻辑回归分类器来说,运算效率太低

5 深度学习分类器 - CNN文本分类

5.1 字符级特征提取

这里和前文差异比较大的地方,主要是提取文本特征这一块,这里的CNN模型采用的是字符级特征提取,比如data目录下cnews_loader.py中:

def read_file(filename):
    """读取文件数据"""
    contents, labels = [], []
    with open_file(filename) as f:
        for line in f:
            try:
                label, content = line.strip().split('\t')
                contents.append(list(content)) # 字符级特征
                labels.append(label)
            except:
                pass
    return contents, labels

def build_vocab(train_dir, vocab_dir, vocab_size=5000):
    """根据训练集构建词汇表,存储"""
    data_train, _ = read_file(train_dir)

    all_data = []
    for content in data_train:
        all_data.extend(content)

    counter = Counter(all_data)
    count_pairs = counter.most_common(vocab_size - 1)
    words, _ = list(zip(*count_pairs))
    # 添加一个 <PAD> 来将所有文本pad为同一长度
    words = ['<PAD>'] + list(words)

学长这里做了一下测试:

#! /bin/env python
# -*- coding: utf-8 -*-
from collections import Counter

"""
字符级别处理,
对于中文来说,基本不是原意的字,但是也能作为一种统计特征来表征文本
"""
content1 = "你好呀大家"
content2 = "你真的好吗?"
# content = "abcdefg"
all_data = []
all_data.extend(list(content1))
all_data.extend(list(content2))
# print list(content) # 字符级别处理
# print "length: " + str(len(list(content)))
counter = Counter(all_data)
count_pairs = counter.most_common(5)
words, _ = list(zip(*count_pairs))
words = ['<PAD>'] + list(words) #['<PAD>', '\xe5', '\xbd', '\xa0', '\xe4', '\xe7']

这种基本不是原意的字符级别的特征,也能从统计意义上表征文本,从而作为特征,这一点需要清楚。

最终,在同一数据集上,得到的分类结果如下:

在这里插入图片描述

6 最后

  • 10
    点赞
  • 187
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
机器学习文本情感分类是一个常见的任务,下面是一般的流程: 1. 数据准备:收集并清洗用于情感分类的文本数据。这可能涉及数据爬取、去除特殊字符、标点符号和停用词的处理,以及对文本进行分词等预处理步骤。 2. 特征提取:将文本转换为可用于机器学习算法的特征表示。常见的特征提取方法包括词袋模型(Bag-of-Words)和词向量(Word Embeddings)等。词袋模型将文本表示为词频向量,而词向量则将每个词映射到一个连续的向量空间。 3. 数据划分:将准备好的数据集划分为训练集和测试集。训练集用于训练模型,测试集用于评估模型的性能。 4. 模型选择:选择适合情感分类任务的机器学习算法。常见的算法包括朴素贝叶斯、支持向量机(SVM)、决策树、随机森林、深度学习模型(如卷积神经网络、循环神经网络)等。 5. 模型训练:使用训练集对选定的模型进行训练。训练过程涉及将特征向量与标签进行匹配,通过最小化损失函数来优化模型的参数。 6. 模型评估:使用测试集评估训练好的模型的性能。常见的评估指标包括准确率、召回率、F1 值等。 7. 模型优化:根据评估结果对模型进行调优。这可能涉及调整超参数、尝试不同的特征表示方法、增加数据样本等。 8. 预测与应用:使用训练好的模型对新的文本进行情感分类预测。将预测结果应用于实际场景中,例如舆情分析、社交媒体监控等。 需要注意的是,每个步骤的具体实现方式可能因任务和数据集的不同而有所差异。因此,在实际应用中,根据具体情况进行调整和改进是必要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值