大数据之数据质量

一、数据质量评估

1. 完整性

2. 准确性

3. 及时性

4. 一致性

二、如何提升数据质量

1. 事前定义数据的监控规则

提炼规则:梳理对应指标、确定对象(多表、单表、字段)、通过影响程度确定资产等级、质量规则制定

2. 事中监控和控制数据生产过程

  • 质量监控和工作流无缝对接
  • 支持定时调度
  • 强弱规则控制ETL流程
  • 对脏数据进行清洗

3. 事后分析和问题跟踪

  • 邮件短信报警
  • 稽核报告查询
    数据质量报告的概览、历史趋势、异常查询、数据质量表覆盖率
  • 问题分析
    异常评估、严重程度、影响范围、问题分类
  • 表打分和质量趋势
  • 报警问题跟踪处理
    参考博文
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值