基础练习简单递归 【1】

基础知识

递归就是自己调用自己

过程分为递和归,一般需要设置一个结束递的条件然后才能让它回归

在这里插入图片描述

//n阶乘
int f(n)
{
	//结束条件
	if(n==1)
		return 1;
	return n*f(n-1);
}

本章题目有许多涉及二叉树相关的递归


将数字变成0的操作次数

  • 算法题目

1342. 将数字变成 0 的操作次数 - 力扣(LeetCode)

  • 题目简介

在这里插入图片描述

  • 源码分析

方法一:递归

//递归
int fac(int num)
{
    if(num == 0)//结束条件
        return 0;
    if(num % 2 ==1)
        return fac(num-1) + 1;
    else
        return fac(num/2) + 1;
}

int numberOfSteps(int num) {
    int res = fac(num);
    return res;
}

方法二:循环

//循环
int numberOfSteps(int num) {
    int count = 0;
    while(num != 0)
    {
        if(num%2 == 0)
            num /= 2;
        else if(num%2 == 1)
            num -= 1;
        count++;
    }
    return count;
}

完全二叉树的节点个数

  • 算法题目

222. 完全二叉树的节点个数 - 力扣(LeetCode)

  • 题目简介

在这里插入图片描述

  • 源码分析

int countNodes(struct TreeNode* root)
{
    if(root==NULL)
    {
        return 0;
    }
    return countNodes(root->left) + countNodes(root->right) + 1;
}

二叉搜索树的范围和

  • 算法题目

938. 二叉搜索树的范围和 - 力扣(LeetCode)

  • 题目简介

在这里插入图片描述

  • 源码分析

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
int rangeSumBST(struct TreeNode* root, int low, int high) {
    if(root == NULL)
        return 0;
    else if(root->val < low)//右子树更大,进一步从右子树判断是否在范围内
        return rangeSumBST(root->right,low,high);
    else if(root->val > high)//左子树更小,进一步从左子树判断
        return rangeSumBST(root->left,low,high);
    return root->val + rangeSumBST(root->left,low,high) + rangeSumBST(root->right,low,high);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值