在arcgis中使用sdmtoolbox将tif批量转化为asc

 数据

数据来自woldclimhttps://worldclim.org/data/index.html,下载的是历史数据Bioclimatic variables,分辨率是30'。

下载好后解压放在同一个文件夹下,文件夹存放路径不要有中文

软件准备

使用的arcgis版本为10.8,插件sdmtoolbox需要从网上下载http://www.sdmtoolbox.org/downloads

下载好后打开arcmap,打开arctoolbox,点击添加工具箱,把下载解压好的插件添加上。

操作步骤

首先设置arcgis的环境变量以保障掩膜提取的环境因子具有相同的行列号和坐标系,具体参照ArcGIS:栅格对齐并保持行列号一致,方法2

选择extract by mask(folder)

在input folder选择环境数据文件夹,不要单独选择文件(也选不了),注意文件夹路径不能有中文,文件夹里存放着解压好的19个tif格式的数据。

output folder 选择想要输出到的文件夹。

Mask选择你想要裁剪的范围(建议使用裁剪好的dem,方便后续maxent软件建模使用),Extent也是范围,但是会裁剪成正方形(就像下面第三幅图)

点开additional paramenters ,cellsize选择mask相同(即dem),output raster type选择ASCII

最后得到这样的结果

如果没有进行环境设置

下面是bio1的arcgis图,很明显看到边界有锯齿和没有对齐的现象,这是因为在进行批量掩膜提取前没有设置arcgis的环境变量,这样还会导致提取出来的气候因子像元大小和dem不一致,在使用maxent时报错,产生地理范围不一致的问题(have different geographic dimensions)

解决思路具体参考我的后续步骤maxent运行报错have different geographic dimensions地理维度不一致

其他可能的问题

  1. 文件路径问题:路径中可能包含非 ASCII 字符或路径过长,这可能导致 ArcGIS 无法正确读取文件。请确认文件路径和文件名是否包含特殊字符,或将文件移动到更短的路径下尝试。

  2. 输入数据格式问题:确保输入数据(例如 .tif 文件)没有损坏,可以通过其他程序(如 QGIS 或其他 GIS 工具)打开并检查这些文件是否正常。

  3. 内存不足:ArcGIS 执行过程中可能需要大量内存,特别是处理大范围的栅格数据时。如果内存不足,可能导致创建栅格数据集失败。你可以尝试关闭其他程序或增加虚拟内存。

  4. 投影和坐标系统不一致:输入数据和掩膜数据的投影和坐标系统需要一致。如果不一致,可能会导致 ExtractByMaskPlus 函数无法正确执行。你可以使用 Define Projection 工具检查并统一数据的坐标系。

  5. 数据类型不匹配:确保操作的数据类型是兼容的。例如,Plus 操作通常需要相同数据类型的栅格,如果数据类型不同,可能会导致错误。

解决方案:

  • 检查文件路径:将文件移动到较短的路径,避免路径中包含特殊字符。
  • 检查数据格式:尝试使用其他工具打开并查看 .tif 文件是否正常。
  • 检查内存使用情况:关闭其他不必要的程序,确保 ArcGIS 有足够的内存运行任务。
  • 统一投影:确保所有数据的投影一致,可以使用 ProjectRaster 工具进行投影转换。
  • 数据类型检查:确保栅格数据类型一致,使用 RasterizeReclassify 工具对数据进行预处理。

### 如何在 ArcGIS 中统一处理影响因子 #### 统一坐标系 为了确保不同来源的影响因子能够在同一地理框架内进行叠加分析,在ArcGIS中所有参与运算的图层应当具有相同的坐标系。当遇到数据集坐标系未知或不匹配的情况时,可利用定义坐标系统的工具来指定正确的坐标系[^1]。 对于已经拥有各自坐标系但需调整一致性的多个影响因子图层,则应采用投影换功能实现它们之间相互兼容的空间参照体系变换操作。这一过程不仅有助于提高后续空间分析精度,而且能有效避免因坐标差异而引发的各种错误。 ```python import arcpy # 设置工作环境 arcpy.env.workspace = "C:/data" # 定义输入和输出路径以及目标坐标系 input_feature = "original_data.shp" output_feature = "projected_data.shp" target_crs = arcpy.SpatialReference('WGS 84 UTM Zone 50N') # 执行投影换 arcpy.Project_management(input_feature, output_feature, target_crs) ``` #### 数据格式标准化 考虑到不同类型的数据源可能存在格式上的区别,比如矢量(shapefile)、栅格(TIFF/ASC),因此有必要对其进行适当化以满足特定应用场景的需求。例如,可以通过SDMToolbox插件完成从`.tif`到`.asc`格式的大规模批量变,从而便于某些外部软件读取使用[^4]。 另外,针对那些原本是非空间属性表形式存在的因素指标,如Excel表格中的统计数据,也可以借助于“添加XY事件图层”命令将其快速变为带有地理位置信息的新图层,进而参与到整个研究区范围内综合评价之中去。 #### 影响因子数值范围一致性调整 有时即使两个变量都代表相同类型的物理意义,但由于采集方法或者计算公式的差别使得其具体表现出来的数值得区间有所出入。此时就需要运用重分类工具对原始值域重新划分界限并赋予新的等级编码,以便更好地反映各要素间相对重要程度的变化趋势[^2]。 ```python from arcpy.sa import * # 创建临时环境设置 with arcpy.EnvManager(scratchWorkspace="C:/data/temp", workspace="C:/data"): # 对栅格数据执行重分类操作 outReclassify = Reclassify("raster_input.tif", "Value", RemapRange([[0, 10, 1], [11, 20, 2]]), "NODATA") # 将结果保存为新文件 outReclassification.save("reclassified_output.asc") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值