/**************************************************************
题目描述
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列x=“x0,x1,…,xn-1”, 序列Y=“y0,y1,…,yk-1是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k- 1,有xij="yj。 例如,x=“ABCBDAB”,Y=“BCDB”是X的一个子序列。对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数。</i0,i1,…,ik-1>,使得对所有的j=0,1,…,k->
输入
第1行为第1个字符序列,都是大写字母组成,以”.”结束。长度小于5000。
第2行为第2个字符序列,都是大写字母组成,以”.”结束,长度小于5000。
输出
第1行输出上述两个最长公共子序列的长度。
第2行输出所有可能出现的最长公共子序列个数,答案可能很大,只要将答案对100,000,000求余即可。
思路
这是一道典型的求最长公共子序列的题,但不只是基础。
首先第一问很容易得到解决;第二问只需要再加一个数组进行计数即可。如果需要更新f数组时,单纯得给s数组赋值即可;若最长长度相等,则只需在之前满足条件的最大值上加上s数组即可。最后再利用循环计数相加取模即可。
****************************************************************/
#include<iostream>
#include<cstdio>
#include<string>
#define INF 100000000
using namespace std;
int n,m,maxl,count,s[5002],ans,f[5002];
string a,b;
int main()
{
cin>>a>>b;
a=' '+a; b=' '+b;
n=a.length();
m=b.length();
for(int i=1;i<n-1;i++)
{
maxl=0;
count=1;
for(int j=1;j<m-1;j++)
{
int yl=f[j],ys=s[j];
if(a[i]==b[j])
{
if(maxl+1>f[j])
{
f[j]=maxl+1;
s[j]=count;
}
else
{
if(maxl+1==f[j])
{
s[j]=(s[j]+count)%INF;
}
}
}
if(maxl<yl)
{
maxl=yl;
count=ys;
}
else
{
if(maxl==yl)
{
count=(count+ys)%INF;
}
}
}
}
ans=0;
count=0;
for(int i=1;i<m-1;i++)
{
if(ans<f[i])
{
ans=f[i];
count=s[i];
}
else
{
if(ans==f[i])
{
count=(count+s[i])%INF;
}
}
}
cout<<ans<<endl<<count<<endl;
return 0;
}
/**************************************************************
Problem: 22852
User: hznq60003
Language: C++
Result: 正确
Time:527 ms
Memory:1720 kb
****************************************************************/
[HAOI2010]最长上升子序列长度
最新推荐文章于 2023-06-04 20:04:27 发布