讲解

扩展欧几里得算法

用于求解方程 ax+by=gcd(a,b) 的解

当 b=0时 							ax+by=a 故而 x=1,y=0

当 b≠0 时     				
									gcd(a,b)=gcd(b,a%b)

对于gcd(b,a%b)

						bx′+(a%b)y′=gcd(b,a%b)
						
						bx′+(a−⌊a/b⌋∗b)y′=gcd(b,a%b)
						
						ay′+b(x′−⌊a/b⌋∗y′)=gcd(b,a%b)=gcd(a,b)
					
所以					x=y′,     y=x′−⌊a/b⌋∗y′

因此可以采用递归的方法,先求出下一层的x′ 和y′,再用x=y′,     y=x′−⌊a/b⌋∗y′求出上一层的x,y.

在这里插入图片描述

#include<iostream>
#include<algorithm>

using namespace std;

int n;

int exgcd(int a,int b, int &x, int &y)//返回gcd(a,b)并且通过引用得到x,y的值。
{
    if(!b)
    {
        x = 1, y = 0;
        return a;
    }
    
    int d = exgcd(b, a % b, x, y);
    int x1 = x, y1 = y;
    x = y1, y = x1 - a / b * y1;
    return d;
    
}

int main()
{
    cin >> n;
    
    while(n --)
    {
        int a, b, x, y;
        cin >> a >> b;
        
        exgcd(a, b, x, y);
        
        cout << x << ' ' << y << endl;
    }
    
    return 0;
}

线性同余方程

用与求a∗x≡b(mod m)的解,等价于a*x = m * y + b,y是整数,化简可得a*x + m*y' = b,y' = -y.

根据裴蜀定理对于任意整数a,b,一定存在非零x,y,使得a*x+by=gcd(a,b).所以要想同余方程有解,
b一定是gcd(a,m)的倍数。

所以我们可以先根据扩展欧几里得算法求出a*x+by=gcd(a,b)的x,然后再把x*(b / gcd(a,b))就得出所求结果。

在这里插入图片描述

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

int n;

int exgcd(int a, int b, int &x,int &y)
{
    if(!b)
    {
        x = 1, y = 0;
        return a;
    }
    
    int d = exgcd(b, a % b, x, y);
    int x1 = x, y1 = y;
    x = y1, y = x1 - a / b * y1;
    
    return d;
}

int main()
{
    cin >> n;
    while(n --)
    {
        int a, b, m, x, y;
        cin >> a>> b >> m;
        
        int d = exgcd(a,m,x,y);
        
        if(b % d) cout << "impossible" << endl;
        //这里因为x * b有可能超出int所以要long long,同时因为x不一定能被d整除,所以要先*b。
       //为了答案在int范围内,要 % m 来保证输出结果(因为通解为x = x + m / d)。
        else cout << (LL) x * b / d % m << endl;
    }
    
    return 0;
}

中国剩余定理

在这里插入图片描述

中国剩余定理说明:在这里插入图片描述

首先让M = m1*m2*...mn,Mi = M / mi,ti表示Mi模mi的逆,即Mi*ti mod mi = 1.则x = a1*t1*M1 + a2*t2*M2 +...an*tn*Mn. 

在这里插入图片描述

因为题目给的条件不是两两互质,所以不能用中国剩余定理。

首先先考虑前两个式子
		x ≡ m1(%a1),  x ≡ m2(%a2);
等价于  x=k1∗a1+m1,  x=k2∗a2+m2. >> k1∗a1+m1=k2∗a2+m2 >> k1∗a1−k2∗a2=m2−m1(a1,a2,m2,m1都是已知,
可以通过扩展欧几里得算法求出k1',k2')
d = gcd(a1,-a2)当m2 - m1 不是d的倍数时,方程无解。
否则 k1 = k1' * (m2 - m1) / d, 
同时可以知道通解为k1 = k1 + k * a2 / d.则此时的x = (k1 + k * a2 / d) * a1 + m1
>> k1 * a1 + m1 +  k * a1 /d * a2 >> m1 = k1 * a1 + m1, a1 = a1 / d * a2.最后通过n - 1次合并
得到x = k * a1 + m1,要求得最小的非负整数x = (m1 % a1 + a1) % a1.
#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

int n;

bool answer = true;

LL exgcd(LL a1, LL a2, LL &k1, LL &k2)
{
    if(!a2)
    {
        k1 = 1, k2 = 0;
        return a1;
    }
    
    LL d = exgcd(a2, a1 % a2, k1, k2);
    LL x = k1, y = k2;
    k1 = y, k2 = x - a1 / a2 * y;
    return d;
}

int main()
{
    cin >> n;
    
    LL a1, m1;
    cin >> a1 >> m1;
    
    for(int i = 0; i < n - 1; i ++)
    {
        LL a2, m2;
        cin >> a2 >> m2;
        
        LL k1, k2;
        LL d = exgcd(a1, -a2, k1, k2);
        
        if((m2 - m1) % d)
        {
            answer = false;
            break;
        }
        
        k1 = k1 * (m2 - m1) / d;
        LL t = abs(a2 / d);
        k1 = (k1 % t + t) % t;
        
        LL x = k1 * a1 + m1;
        
        m1 = k1 * a1 + m1;
        a1 = abs(a1 / d * a2);
    }
    
    if(answer) cout << (m1 % a1 + a1) % a1 << endl;
    else cout << -1 << endl;
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值