数字调制系统的误码率matlab仿真,对比ASK,FSK和MDPSK

目录

一、理论基础

二、核心程序

三、测试结果


一、理论基础

       振幅键控(也称幅移键控),记做ASK,或称其为开关键控(通断键控),记做OOK 。二进制数字振幅键控通常记做2ASK。对于振幅键控这样的线性调制来说,在二进制里,2ASK是利用代表数字信息“0”“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续的输出,有载波输出时表示发送“1”,无载波输出时表示发送“0”。根据线性调制的原理,一个二进制的振幅调制信号可以表示完成一个单极性矩形脉冲序列与一个正弦型载波的乘积。2ASK信号可表示为

       在二进制频移键控(2FSK)中,当传送“1”码时对应于载波频率,传送“0”码时对应于载波频率。    

 由上式可知,相位不连续的2FSK信号可以看成是两个2ASK调幅信号之和。

        ASK是一种调制技术,通过调制载波的振幅来传输数字信息。具体而言,数字比特流中的“0”和“1”对应不同的振幅值。在ASK中,载波的频率和相位保持不变,只有振幅发生变化。

特点:

  • 简单易实现,适用于低复杂度的通信系统。
  • 在低信噪比情况下可能受到干扰的影响。

2FSK信号波形可看作两个2ASK信号波形的合成,下图是相位连续的2FSK信号波形。

       FSK是一种调制技术,通过调制载波的频率来传输数字信息。在FSK中,数字比特流中的“0”和“1”分别对应不同的载波频率。通常,载波频率会围绕中心频率进行变化。

特点:

  • 对频率扰动较为敏感,适用于频率稳定的环境。
  • 在抗干扰能力较好的情况下,性能相对较好。

       2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2所示。

在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

定义为本码元初相与前一码元初相之差,假设:

=0→数字信息“0”;

=1→数字信息“1”。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:

数字信息:1 0 1 1 0 1 1 1 0 1

       M-DPSK是一种调制技术,它将连续相位的变化映射到数字数据上。在DPSK中,相邻的相位之间的差别表示一个数字符号。M-DPSK将M个相位状态映射到M种不同的数字符号,因此称为M-ary DPSK。

特点:

  • 相比于ASK和FSK,M-DPSK在一定程度上对噪声和相位漂移的影响较小。
  • 在较高信噪比下性能较好,但随着M值增加,可能会导致更高的错误率。

       总结而言,ASK、FSK和M-DPSK是数字通信中常用的调制技术,各自具有不同的特点和应用场景。选择适当的调制技术取决于通信环境、信噪比、频率稳定性以及系统复杂度等因素。

二、核心程序

 
a=round(rand(1,i));
st1=t;
for n=1:10
    if a(n)<1;
        for m=j/i*(n-1)+1:j/i*n
            st1(m)=0;
        end
    else
        for m=j/i*(n-1)+1:j/i*n
            st1(m)=1;
        end
    end
end
figure(1);
subplot(411);
plot(t,st1);
title('绝对码');
axis([0,5,-1,2]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%差分变换
b=zeros(1,i);
b(1)=a(1);
for n=2:10
    if a(n)>=1;
        if b(n-1)>=1
            b(n)=0;
        else
            b(n)=1;
        end
    else
        b(n)=b(n-1);
    end
end
st1=t;
for n=1:10
    if b(n)<1;
        for m=j/i*(n-1)+1:j/i*n
            st1(m)=0;
        end
    else
        for m=j/i*(n-1)+1:j/i*n
            st1(m)=1;
        end
    end
end
subplot(412);
plot(t,st1);
title('相对码');
axis([0,5,-1,2]);
st2=t;   
for k=1:j;
    if st1(k)>=1;
        st2(k)=0;
    else
        st2(k)=1;
    end
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%载波信号
s1=sin(2*pi*fc*t);
s2=cos(2*pi*fc*t);
subplot(413);
plot(s1);
title('载波信号sin');
subplot(414);
plot(s2);
title('载波信号cos');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%调制

d1=st1.*s1;
d2=st2.*(-s1);%相移180

d3=st1.*s2;
d4=st2.*(-s2);%相移180

figure(2);
subplot(421);
plot(t,d1);


subplot(422);
plot(t,d3);


e_dpsk=(d1+d2)+(d3+d4);
subplot(423);
plot(t,e_dpsk);
title('调制后波形');

noise=rand(1,j);
dpsk=e_dpsk+noise;%加入噪声
subplot(424);
plot(t,dpsk);
title('加噪声信号');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%相干解调
dpsk=dpsk.*sin(2*pi*fc*t);%与载波相乘
subplot(425);
plot(t,dpsk);
title('与载波相乘后波');
[f,af] = T2F(t,dpsk);%通过低通滤波器
[t,dpsk] = lpf(f,af,B);
subplot(426);
plot(t,dpsk);
title('通过低通滤波器波形');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%抽样判决
st=zeros(1,i);
for m=0:i-1;
if dpsk(1,m*500+250)<0;
    st(m+1)=0;
    for j=m*500+1:(m+1)*500;
        dpsk(1,j)=0;
    end
else
    for j=m*500+1:(m+1)*500;
        st(m+1)=1;
        dpsk(1,j)=1;
    end
end
end
subplot(427);
plot(t,dpsk);
axis([0,5,-1,2]);
title('抽样判决后波形')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%码反变换
dt=zeros(1,i);
dt(1)=st(1);
for n=2:10;
    if (st(n)-st(n-1))<=0&&(st(n)-st(n-1))>-1;
        dt(n)=0;
    else
        dt(n)=1;
    end
end
st=t;
for n=1:10
    if dt(n)<1;
        for m=j/i*(n-1)+1:j/i*n
            st(m)=0;
        end
    else
        for m=j/i*(n-1)+1:j/i*n
            st(m)=1;
        end
    end
end
subplot(428);
plot(t,st);
title('码反变换后波形');
axis([0,5,-1,2]);
up52

三、测试结果

 

<think>好的,用户想了解RCAB模块在图像超分辨率任务中的作用和原理。首先,我需要回忆一下RCAB的相关知识。RCAB全称是Residual Channel Attention Block,应该是在残差块的基础上加入了通道注意力机制。这通常用于提升超分辨率模型的性能。 记得残差块(Residual Block)在ResNet中被广泛使用,通过跳跃连接缓解梯度消失的问题,帮助训练更深的网络。而通道注意力机制,比如SENet中的Squeeze-and-Excitation模块,能够自动学习各个通道的重要性,增强有用的特征,抑制不重要的。RCAB可能结合了这两者。 接下来,需要确认RCAB的具体结构。根据常见的设计,RCAB可能包含多个卷积层,然后是通道注意力模块,最后通过残差连接相加。这样可以在提取特征的同时,动态调整各通道的权重,让网络更关注重要的信息。 在超分辨率任务中,RCAB的作用应该是增强高频细节的恢复,比如边缘和纹理,这对于提升图像清晰度至关重要。同时,通道注意力机制能有效利用通道间的依赖关系,优化特征表达,从而提升重建质量。 应用场景方面,RCAB可能被用于如EDSR、RCAN等超分辨率模型中。这些模型通常堆叠多个RCAB模块,通过深层的网络结构逐步恢复高分辨率图像。特别是在处理大倍数超分辨率(如4x、8x)时,RCAB能帮助保持细节,减少模糊。 还需要考虑RCAB的优势。比如,通过残差学习简化了优化过程,而通道注意力则增强了特征的区分能力。这可能使得模型在计算资源有限的情况下仍能保持高效,同时提升性能。 需要验证这些信息是否正确。参考用户提供的资料,引用[1]提到多尺度卷积和特征融合,引用[2]提到信息交互和注意力机制。虽然没有直接提到RCAB,但通道注意力属于注意力机制的一种,符合引用中的信息。因此可以推断RCAB的应用场景这些模块类似,用于特征提取和优化。 总结来说,RCAB的作用是通过残差结构和通道注意力机制,有效提取并优化特征,提升超分辨率重建的质量。应用场景包括各种基于深度学习的超分辨率模型,特别是在需要恢复细节和高效利用特征时。</think>RCAB(Residual Channel Attention Block)模块在图像超分辨率任务中主要用于**增强特征表达能力并优化高频细节恢复**,其核心原理是通过残差学习通道注意力机制的结合,动态调整特征通道的重要性权重。 ### 作用原理分步说明: 1. **残差学习框架** RCAB基于残差块(Residual Block)设计,包含两个卷积层和激活函数,通过跳跃连接(Skip Connection)将输入输出相加。这种方式缓解了梯度消失问题,支持更深的网络训练,公式为: $$F(x) = H(x) + x$$ 其中$H(x)$为残差函数,$x$为输入特征。 2. **通道注意力机制** 在残差块后引入通道注意力模块(Channel Attention Module),通过全局平均池化(Global Average Pooling)统计通道特征,并利用全连接层生成通道权重: $$w_c = \sigma(W_2 \cdot \delta(W_1 \cdot \text{GAP}(x)))$$ 其中$\sigma$为Sigmoid函数,$\delta$为ReLU,$W_1$和$W_2$为全连接层参数。最终输出特征为各通道加权后的结果: $$x' = w_c \cdot x$$ 该机制使网络自动关注对重建更重要的特征通道[^1]。 3. **多尺度特征融合** RCAB常多尺度特征提取模块结合(如引用[1]中提到的多尺度卷积层),通过不同感受野的卷积核捕获低频和高频信息,再利用通道注意力筛选关键特征,减少冗余计算,提升重建效率。 ### 应用场景 - **单图像超分辨率(SISR)**:如RCAN(Residual Channel Attention Networks)模型,通过堆叠多个RCAB模块恢复高分辨率图像的细节[^2]。 - **多模态超分辨率融合**:在红外可见光图像融合任务中,RCAB用于增强跨模态特征的表征能力,保留边缘和纹理信息[^1]。 - **轻量超分辨率网络**:由于通道注意力可抑制无效特征,RCAB在减少计算量的同时保持性能,适用于移动端部署。 ### 示例模型结构 ```python class RCAB(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, 3, padding=1) self.conv2 = nn.Conv2d(channels, channels, 3, padding=1) self.ca = ChannelAttention(channels) # 通道注意力模块 def forward(self, x): res = self.conv1(x) res = F.relu(res) res = self.conv2(res) res = self.ca(res) # 通道加权 return x + res # 残差连接 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值