训练模型时GPU占用率过低

当在训练Yolov8模型时遇到GPU利用率低导致内存问题,调整batch-size和worker数量可能引发更多问题。实际GPU利用率应在nvidia-smi工具中查看,通常90%以上利用率下才不会内存爆满。
摘要由CSDN通过智能技术生成

训练yolov8模型时发现GPU利用率过低

训练模型时设置的batch-size是12,worker是3,按照网上的方法将batch-size或者worker调大,会出现内存不足和CUDA相关的各种问题,最后才发现训练模型时的GPU利用率,不是在任务管理器查看的。

cmd打开终端,在终端输入nvidia-smi,回车执行命令就能看到GPU利用率:

90%,怪不得调高batch会内存爆掉。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值