xgboost简易推导

xgboost是一个集大成的算法,下面仅仅是一个简单的推导过程,其中的算法思想需要我们去深入理解掌握,若有问题,欢迎提出探讨。
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
XGBoost,全名为eXtreme Gradient Boosting,是一种基于决策树的集成学习算法。它结合了Gradient Boosting算法和决策树算法的优点,在许多机器学习竞赛中取得了显著的成绩。 下面是XGBoost的数学推导XGBoost的目标函数为: $$ Obj = \sum_{i=1}^{n}l(y_i, \hat{y_i}) + \sum_{k=1}^{K}\Omega(f_k) $$ 其中,$n$为样本数,$y_i$为第$i$个样本的真实值,$\hat{y_i}$为第$i$个样本的预测值,$l(y_i, \hat{y_i})$为损失函数,$K$为树的数量,$\Omega(f_k)$为正则化项。正则化项的目的是防止过拟合,它包括树的叶子节点数量和叶子节点分数的二阶范数。 XGBoost使用Gradient Boosting算法进行训练,Gradient Boosting算法的核心思想是迭代地训练一组弱学习器,将它们组合成一个强学习器。每一次迭代都会添加一个新的树模型,它的预测值是前面树模型的预测值和当前树模型的预测值的加权和。 因此,我们需要定义一个损失函数$L$,它是所有树模型预测值和真实值之间的差距的加权和,即: $$ L = \sum_{i=1}^{n}l(y_i, \hat{y_i}) + \sum_{k=1}^{K}\Omega(f_k) $$ 其中,$\hat{y_i}$为所有树模型预测值的加权和。 为了最小化损失函数$L$,我们需要对每个树模型的预测值进行求解。我们可以使用梯度下降算法来优化损失函数,其中梯度是损失函数关于当前模型的导数。 对于第$k$个树模型,我们需要求解其预测值$f_k(x_i)$,它可以表示为: $$ f_k(x_i)=f_{k-1}(x_i)+h_k(x_i) $$ 其中,$f_{k-1}(x_i)$为前$k-1$个树模型的预测值,$h_k(x_i)$为第$k$个树模型的预测值。 我们可以使用泰勒展开式来近似$h_k(x_i)$: $$ h_k(x_i) = \sum_{j=1}^{J}w_{j,k} I(x_i\in R_{j,k}) $$ 其中,$w_{j,k}$为第$j$个叶子节点的分数,$R_{j,k}$为第$j$个叶子节点的区域。 我们需要对每个叶子节点的分数进行求解,可以使用最小二乘法来求解。对于第$j$个叶子节点,我们需要求解其分数$w_{j,k}$,它可以表示为: $$ w_{j,k}=-\frac{\sum_{x_i\in R_{j,k}}g_i}{\sum_{x_i\in R_{j,k}}h_i+\lambda} $$ 其中,$g_i$为损失函数关于预测值的一阶导数,$h_i$为损失函数关于预测值的二阶导数,$\lambda$为正则化参数。 最后,我们可以使用梯度下降算法来更新每个树模型的预测值。对于第$k$个树模型,我们需要将其预测值$f_k$更新为: $$ f_k(x_i)=f_{k-1}(x_i)+\eta\sum_{j=1}^{J}w_{j,k} I(x_i\in R_{j,k}) $$ 其中,$\eta$为学习率,它控制每个树模型的贡献大小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值