题目描述
如题,已知一个数列,你需要进行下面两种操作:
-
将某区间每一个数数加上 x;
-
求出某一个数的值。
输入格式
第一行包含两个整数 N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含 N 个用空格分隔的整数,其中第 ii 个数字表示数列第 ii 项的初始值。
接下来 M 行每行包含 2 或 4个整数,表示一个操作,具体如下:
操作 1: 格式:1 x y k
含义:将区间 [x,y] 内每个数加上 kk;
操作 2: 格式:2 x
含义:输出第 x 个数的值。
输出格式
输出包含若干行整数,即为所有操作 2 的结果。
输入输出样例
输入 #1复制
5 5 1 5 4 2 3 1 2 4 2 2 3 1 1 5 -1 1 3 5 7 2 4
输出 #1复制
6 10
说明/提示
样例 1 解释:
故输出结果为 6、10。
数据规模与约定
对于 30\%30% 的数据:N≤8,M≤10;
对于 70\%70% 的数据:10000N≤10000,M≤10000;
对于 100\%100% 的数据:5000001≤N,M≤500000,1≤x,y≤n,保证任意时刻序列中任意元素的绝对值都不大于 2^30。
思路
本题与树状数组1
的区别为从单点修改变成了区间修改,区间查询变成了单点查询。区间修改可在单点修改的前提下运用 差分 即可。
代码
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<math.h>
#include<cstring>
#include<string>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int const N = 5e5 + 5;
int c[N], n, a[N], b[N];
int lowbit(int x)
{
return x & -x;
}
int ask(int x)
{
int res = 0;
for (; x; x -= lowbit(x))
{
res += c[x];
}
return res;
}
void update(int x, int d)
{
for (; x <= n; x += lowbit(x))
{
c[x] += d;
}
return;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
int m;
cin >> n >> m;
for (int i = 1; i <= n; ++i)
{
cin >> a[i];
}
for (int i = 1; i <= n; ++i)
{
b[i] = a[i] - a[i - 1];
update(i, b[i]);
}
for (int i = 1; i <= m; ++i)
{
int o;
cin >> o;
if (o == 1)
{
int x, y, k;
cin >> x >> y >> k;
update(x, k);
update(y + 1, -k);
}
else
{
int x;
cin >> x;
cout << ask(x) << endl;
}
}
return 0;
}