图论基础知识(六) —— Euler图和Hamilton图

本文介绍了Euler图和Hamilton图的基本概念和性质。Euler图是指包含Euler闭迹或Euler开迹的图,其中Euler闭迹是所有边恰好出现一次的闭合路径。Hamilton图则涉及包含所有顶点的圈或路,Hamilton圈和Hamilton路是其关键特征。文章还探讨了Euler图与Hamilton图的定理,包括连通性、顶点度数与图的性质之间的关系。
摘要由CSDN通过智能技术生成

一、Euler图

定义1:Euler迹、Euler闭迹、Euler图、Euler开迹、半Euler图

设G是一个图,G中所包含所有边的迹(即每条边恰好出现一次的路径)称为Euler迹,闭的Euler迹称为Euler闭迹Euler回路,具有Euler回路的图称为Euler图,开的Euler迹称为Euler开迹,具有Euler开迹的图称为半Euler图

定义2:Euler有向迹、Euler有向闭迹、Euler有向图、Euler有向开迹、半Euler有向图

设D是一个有向图,D中包含所有弧的有向迹,称为Euler有向迹,闭的Euler有向迹称为Euler有向闭迹Euler有向回路,具有Euler有向回路的图称为Eule有向图,开的Euler有向迹称为Euler有向开迹,具有Euler有向开迹的图称为半Euler有向图

定义3:平衡点

设D是有向图, v ∈ V ( G ) v \in V(G) vV(G),若 d − ( v ) = d + ( v ) d^-(v) = d^+(v) d

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值