Euler图:
Euler迹:经过连通图G的每条边的迹。
Euler闭迹:经过连通图G的每条边,且回到起点。
Euler图:存在欧拉闭迹的图。
ps:1->2,一个点出现一次,一定要用掉2条边,每条边又只能出现一次,则表示每个点出现一次,则用2条新边。
2->3,若每个点的度至少是2,根据握手定理,m≥n,因此必定有圈。移除一个圈,则圈内的所有的点的度数,都要减2,因此原图中每个点的度还是偶数。
3->1,从v点开始,走完Z1圈之后回到v点,然后走Z2圈,再回到v点,因此形成了一条闭迹。
ps:没有奇点,则所有点都是偶点。反之,是对推论的充分性的证明。不存在只有一个奇点的情况,不然所有度加起来,就为偶数了。
中国邮递员问题:
邮递员从邮局出发,递送邮件,然后返回邮局,要求辖区每条街至少走一遍,且走过的总路程最短,应如何选择路线?
最优环游:在一个连通的具有非负权的赋权图G中找一条包含每条边(允许重复),且边权之和最小的闭途径。
欧拉环游:一条通过G的每条边恰好一次的环游。
若G是Euler图,则G的任何Euler环游都是最优环游。
欧拉图中确定欧拉环游的,Fleury算法:
若G不是Euler图,则G的任何环游,通过某些边不止一次,可通过下列算法求出G的一条最优环游。
不是Euler图,求最优环游的方法:
例子:
ps:所谓交换重复边和不重复边,就是在不重复的边上,加多一个重复的边,然后把原来重复的边给删掉。
不是Euler图,关于赋权图的情况:
对不是Euler图,求赋权图的最优环游的算法:
例子: