图论-Euler图与Hamilton图

本文介绍了Euler图和Hamilton图的概念及其性质。Euler图是指存在Euler闭迹的图,而Hamilton图则是存在Hamilton圈的图。讨论了Euler图的Fleury算法寻找最优环游,以及非Euler图的最优环游问题。同时阐述了Hamilton图的特征,包括Hamilton路和Hamilton圈,并探讨了旅行售货员问题与最优H圈的求解方法。
摘要由CSDN通过智能技术生成

Euler图:

Euler迹:经过连通图G的每条边的迹。

Euler闭迹:经过连通图G的每条边,且回到起点。

Euler图:存在欧拉闭迹的图。

ps:1->2,一个点出现一次,一定要用掉2条边,每条边又只能出现一次,则表示每个点出现一次,则用2条新边。

2->3,若每个点的度至少是2,根据握手定理,m≥n,因此必定有圈。移除一个圈,则圈内的所有的点的度数,都要减2,因此原图中每个点的度还是偶数。

3->1,从v点开始,走完Z1圈之后回到v点,然后走Z2圈,再回到v点,因此形成了一条闭迹。

ps:没有奇点,则所有点都是偶点。反之,是对推论的充分性的证明。不存在只有一个奇点的情况,不然所有度加起来,就为偶数了。

  

中国邮递员问题:

邮递员从邮局出发,递送邮件,然后返回邮局,要求辖区每条街至少走一遍,且走过的总路程最短,应如何选择路线?

最优环游:在一个连通的具有非负权的赋权图G中找一条包含每条边(允许重复),且边权之和最小的闭途径。

欧拉环游:一条通过G的每条边恰好一次的环游。

若G是Euler图,则G的任何Euler环游都是最优环游。

欧拉图中确定欧拉环游的,Fleury算法:

若G不是Euler图,则G的任何环游,通过某些边不止一次,可通过下列算法求出G的一条最优环游。

不是Euler图,求最优环游的方法:

例子:

ps:所谓交换重复边和不重复边,就是在不重复的边上,加多一个重复的边,然后把原来重复的边给删掉。

不是Euler图,关于赋权图的情况:

对不是Euler图,求赋权图的最优环游的算法:

例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值