高数提纲 - 基础

基本初等函数

  • 两个要素:对应法则、定义域
    两个要素都相同,才能算是同一函数。
    x x 11/x 不是同一函数,因为后者 x0 x ≠ 0 (定义域不同)

指数函数

  • a0=1 a 0 = 1
  • x=elnxuv=ev lnu x = e l n x → u v = e v   l n u (处理幂指函数)
  • e2.7 e ≈ 2.7

三角函数

  • 有界: 1sinxcosx1π2<arctanx<π2 − 1 ≤ sin ⁡ x , cos ⁡ x ≤ 1 , − π 2 < arctan ⁡ x < π 2
    放缩用,或求极限时无穷小乘有界
  • 主值区间: π2arcsinxπ20arccosxπ − π 2 ≤ arcsin ⁡ x ≤ π 2 , 0 ≤ arccos ⁡ x ≤ π
    比如由 y=cos(x) y = cos ⁡ ( x ) 反解 x=arccosy x = arccos ⁡ y 时,必须保证这个 x 是属于 [0,π] [ 0 , π ] 的,如果不是,就要对原式等价变形,一定要使得 cos 括号里的东西是属于 arccos 的主值区间才能反解

最大、最小值函数

U = max { f(x),g(x) },V = min { f(x),g(x) }

  • U=12[f(x)+g(x)]+|f(x)g(x)| ] U = 1 2 [ f ( x ) + g ( x ) ] + | f ( x ) − g ( x ) |   ]
  • V=12[f(x)+g(x)]|f(x)g(x)| ] V = 1 2 [ f ( x ) + g ( x ) ] − | f ( x ) − g ( x ) |   ]
  • U+V=f(x)+g(x) U + V = f ( x ) + g ( x )
  • UV=|f(x)g(x)| U − V = | f ( x ) − g ( x ) |
  • UV=f(x)g(x) U V = f ( x ) g ( x )

取整函数

不超过 x 的最大整数

  • x1<[x]x x − 1 < [ x ] ≤ x ,考虑夹逼准则
  • [x+n]=[x]+n [ x + n ] = [ x ] + n (n 是整数)
  • n[x]nx n [ x ] ≤ n x
  • [x]+[y][x+y] [ x ] + [ y ] ≤ [ x + y ]
  • x0+lim[x]=0 x → 0 + 时 , lim [ x ] = 0
  • x0lim[x]=1 x → 0 − 时 , lim [ x ] = − 1

幂指函数

f(x)g(x)e g(x)lnf(x) f ( x ) g ( x ) → e   g ( x ) ln ⁡ f ( x )
求极限时的同时趋向问题,如: x+limex[(1+1x)x]xlimexex x → + ∞ 时 , lim e x [ ( 1 + 1 x ) x ] x ≠ lim e x e x

构造奇、偶函数

f(x) 在 [ -a,a ] 上定义

  • f(x)f(x) f ( x ) − f ( − x ) → 奇函数
  • f(x)+f(x) f ( x ) + f ( − x ) → 偶函数

对称性

f(x)=f(2Tx)f(T+x)=f(Tx) f ( x ) = f ( 2 T − x ) , f ( T + x ) = f ( T − x ) ,T 为对称轴


公式

数列

  • nk=1(2k1)=n2 ∑ k = 1 n ( 2 k − 1 ) = n 2 ,奇数求和
  • nk=1k2=16n(n+1)(2n+1) ∑ k = 1 n k 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) ,平方求和
  • nk=1k3=[n(n+1)2]2=(nk=1k)2 ∑ k = 1 n k 3 = [ n ( n + 1 ) 2 ] 2 = ( ∑ k = 1 n k ) 2 ,立方求和
  • nk=1k(k+1)=13n(n+1)(n+2) ∑ k = 1 n k ( k + 1 ) = 1 3 n ( n + 1 ) ( n + 2 )
  • nk=11k(k+1)=nn+1 ∑ k = 1 n 1 k ( k + 1 ) = n n + 1

三角

  • sin 与 cos:奇变偶不变,符号看象限
  • sin2x+cos2x=1 sin 2 ⁡ x + cos 2 ⁡ x = 1
  • arcsinx+arccosx=π21x1 arcsin ⁡ x + arccos ⁡ x = π 2 , − 1 ≤ x ≤ 1
  • arctanx+arccot x=π2 arctan ⁡ x + a r c c o t   x = π 2

倍角

  • sin2x=2sinxcosx sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x
  • cos2x=cos2xsin2x=12sin2x=2cos2x1 cos ⁡ 2 x = cos 2 ⁡ x − sin ⁡ 2 x = 1 − 2 sin 2 ⁡ x = 2 cos 2 ⁡ x − 1
  • tan2x=2tanx1tan2x tan ⁡ 2 x = 2 tan ⁡ x 1 − tan 2 ⁡ x

半角

  • sinx2=±1cosx2 sin ⁡ x 2 = ± 1 − cos ⁡ x 2
  • cosx2=±1+cosx2 cos ⁡ x 2 = ± 1 + cos ⁡ x 2
  • tanx2=1cosxsinx=sinx1+cosx tan ⁡ x 2 = 1 − cos ⁡ x sin ⁡ x = sin ⁡ x 1 + cos ⁡ x

和差

  • sin(a±b)=sinacosb±cosasinb sin ⁡ ( a ± b ) = sin ⁡ a cos ⁡ b ± cos ⁡ a sin ⁡ b
  • cos(a±b)=cosacosbsinasinb cos ⁡ ( a ± b ) = cos ⁡ a cos ⁡ b ∓ sin ⁡ a sin ⁡ b
  • tan(a±b)=tana±tanb1tanatanb tan ⁡ ( a ± b ) = tan ⁡ a ± tan ⁡ b 1 ∓ tan ⁡ a tan ⁡ b

和差化积

  • sina+sinb=2sina+b2cosab2 sin ⁡ a + sin ⁡ b = 2 sin ⁡ a + b 2 cos ⁡ a − b 2
  • sinasinb=2sinab2cosab2 sin ⁡ a − sin ⁡ b = 2 sin ⁡ a − b 2 cos ⁡ a − b 2
  • cosa+cosb=2cosa+b2cosab2 cos ⁡ a + cos ⁡ b = 2 cos ⁡ a + b 2 cos ⁡ a − b 2
  • cosacosb=2sina+b2sinab2 cos ⁡ a − cos ⁡ b = − 2 sin ⁡ a + b 2 sin ⁡ a − b 2

积化和差

  • sinacosb=12[sin(a+b)+sin(ab)] sin ⁡ a cos ⁡ b = 1 2 [ sin ⁡ ( a + b ) + sin ⁡ ( a − b ) ]
  • cosacosb=12[cos(a+b)+cos(ab)] cos ⁡ a cos ⁡ b = 1 2 [ cos ⁡ ( a + b ) + cos ⁡ ( a − b ) ]
  • sinasinb=12[cos(ab)cos(a+b)] sin ⁡ a sin ⁡ b = 1 2 [ cos ⁡ ( a − b ) − cos ⁡ ( a + b ) ]

万能公式

u=tanx2π<x<π u = tan ⁡ x 2 ( − π < x < π )

  • sinx=2u1+u2 sin ⁡ x = 2 u 1 + u 2
  • cosx=1u21+u2 cos ⁡ x = 1 − u 2 1 + u 2

对数

  • log(MN)=logM+logN log ⁡ ( M N ) = log ⁡ M + log ⁡ N ,连乘转求和
  • logMN=logMlogN log ⁡ M N = log ⁡ M − log ⁡ N ,除法转减法
  • loganbm=mnlogab log a n ⁡ b m = m n log a ⁡ b
  • logab=logcalogcb log a ⁡ b = log c ⁡ a log c ⁡ b ,换底

因式分解

  • (a±b)3=a3±3a2b+3ab2±b3 ( a ± b ) 3 = a 3 ± 3 a 2 b + 3 a b 2 ± b 3 ,二项展开的特例
  • a3±b3=(a±b)(a2ab+b2) a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 )
  • anbn=(ab)(an1+an2b++abn2+bn1 a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + … + a b n − 2 + b n − 1
    • 特例: xn1=(x1)(xn1+xn2++x+1) x n − 1 = ( x − 1 ) ( x n − 1 + x n − 2 + … + x + 1 )

双阶乘

即阶乘的步长为 2

  • (2n)!!=2×4×6...×(2n)=2nn! ( 2 n ) ! ! = 2 × 4 × 6... × ( 2 n ) = 2 n ⋅ n !
  • (2n1)!!=1×3×5...×(2n1) ( 2 n − 1 ) ! ! = 1 × 3 × 5... × ( 2 n − 1 )
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值