高数提纲 - 极限,连续

数列极限

ε>0 ∀ ε > 0 ,总有当 n > N 时, |xnA|<ε | x n − A | < ε ,则 A 是 {xn} { x n } 的极限

  • {xn} { x n } 收敛,则它的任意子序列都收敛,且极限相同
    • 逆否:任一子序列发散 原序列发散
  • 两个子序列极限不同,则原序列发散。如: (1)n ( − 1 ) n

性质

  • 惟一:极限存在 极限惟一
  • 有界:极限存在 数列有界(即 |xn|M | x n | ≤ M
  • 保号:极限 > 0,则 n > N 时 xn>0 x n > 0 ;极限 < 0,…

四则运算

limxn=alimyn=b lim x n = a , lim y n = b 都存在时!

  • lim(xn±yn)=limxn±limyn=a+b lim ( x n ± y n ) = lim x n ± lim y n = a + b
  • limxnyn=limxnlimyn=ab lim x n y n = lim x n ⋅ lim y n = a b
  • b0yn0limxnyn=ab b ≠ 0 , y n ≠ 0 , lim x n y n = a b

判极限存在

  • 夹逼: xnynzn x n ≤ y n ≤ z n ,且 limxn=limzn=Alimyn=A lim x n = lim z n = A ⇒ lim y n = A

函数极限

类似数列,换成邻域

趋向

  • x x → ∞ x x → − ∞ x+ x → + ∞
  • xx0 x → x 0 xx0 x → x 0 − xx+0 x → x 0 +

性质

  • 惟一
  • 局部有界,即邻域内有界
  • 局部保号,邻域内保号

四则运算

类似数列,极限都存在才能拆!

  • 线性组合的极限 = 极限的线性组合
  • 乘积的极限 = 极限的乘积
    • lim[f(x)]n=[limf(x)]n lim [ f ( x ) ] n = [ lim f ( x ) ] n
  • 比值的极限 = 极限的比值

无穷

无穷大和无穷小互为倒数(除了 0 不当分母) 倒代换,趋 换成趋 0,可以用等价无穷小、泰勒展开

无穷小比阶

  • limα(x)β(x)=0α(x) lim α ( x ) β ( x ) = 0 → α ( x ) β(x) β ( x ) 阶(趋 0 更快)
  • limα(x)β(x)=C0 lim α ( x ) β ( x ) = C ≠ 0 → 阶(趋 0 更慢)
  • limα(x)β(x)=1 lim α ( x ) β ( x ) = 1 → 等价无穷小 α(x) α ( x ) ~ β(x) β ( x )
  • limα(x)[β(x)]k=C0 lim α ( x ) [ β ( x ) ] k = C ≠ 0 → k 阶无穷小

无穷小运算

  • 有限个无穷小求和 / 乘积是无穷小
  • 无穷小 × × 有界 = 无穷小
  • o(xm)±o(xn)=o(xmin{mn} ) o ( x m ) ± o ( x n ) = o ( x min { m , n }   ) ,加减 低吞高
  • o(xm)o(xn)=o(xm+n) o ( x m ) ⋅ o ( x n ) = o ( x m + n ) ,乘 阶数叠加
  • xmo(xn)=o(xm+n) x m ⋅ o ( x n ) = o ( x m + n )
  • ko(xm)=o(xm)k0 k ⋅ o ( x m ) = o ( x m ) , k ≠ 0 → 常数无效

等价无穷小

x0 x → 0

  • sin x ~ x
  • tan x ~ x
  • arcsin x ~ x
  • arctan x ~ x
  • ln(1+x) ln ⁡ ( 1 + x ) ~ x( loga(1+x) log a ⁡ ( 1 + x ) ~ xlna x ln ⁡ a
  • ex1 e x − 1 ~ x
  • ax1 a x − 1 ~ xlna x ⋅ ln ⁡ a
  • 1 - cos x ~ 12x2 1 2 x 2
  • (1+x)a1 ( 1 + x ) a − 1 ~ ax

泰勒公式

x0 x → 0

  • sinx=xx33!+o(x3) sin ⁡ x = x − x 3 3 ! + o ( x 3 )
  • arcsinx=x+x33!+o(x3) arcsin ⁡ x = x + x 3 3 ! + o ( x 3 )
  • cosx=1x22!+x44!+o(x4) cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 )
  • tanx=x+x33+o(x3) tan ⁡ x = x + x 3 3 + o ( x 3 )
  • arctanx=xx33+o(x3) arctan ⁡ x = x − x 3 3 + o ( x 3 )
  • ln(1+x)=xx22+x33+o(x3) ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 )
  • ex=1+x+x22!+x33!+o(x3) e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 )
  • (1+x)a=1+ax+a(a1)2!+o(x2) ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! + o ( x 2 )

求极限

夹逼、洛必达

洛必达

  • 00 0 0 ∞ ∞
  • 上下分别求导,而不是分式求导
  • 可多次使用(满足条件的话)
  • 求出来是存在或无穷大(无穷大是特殊的存在),则原来就是存在或无穷大
  • 求出来不存在(振荡),则原式未必不存在(洛必达失效)

连续

Δx0limΔy=lim[f(x0+Δx)f(x0)]=0 Δ x → 0 时 , lim Δ y = lim [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0

间断点

  • 第一类:两端极限都存在
    • 可去:左极限 = 右极限
    • 跳跃:左极限 右极限
  • 第二类:极限不存在
    • 无穷
    • 振荡

极限定义的本质

任意正数 ε ε 的形式不重要,关键是它要能任意小,如:

  • |f(x)A|<eε | f ( x ) − A | < e ε 不行,因为 eε e ε 必大于 1,不能任意小
  • |f(x)A|<12N | f ( x ) − A | < 1 2 N (N 是正整数)就可以,因 12N 1 2 N 能任意小
函数在区间上有界
  • f(x) 在 [ a,b ] 上连续,则 f(x) 在 [ a,b ] 上有界
  • f(x) 在(a,b) 上连续,且 limxa+f(x) lim x → a + f ( x ) limxbf(x) lim x → b − f ( x ) 存在,则 f(x) 在(a,b)上有界

特殊点:

  • 间断点
  • 无定义点(分母为 0)
  • ± ± ∞ (这个易漏)
算数列极限
  • 放缩 + 夹逼
    • 放缩成通项相同的
      limn(nn2+1+nn2+2++nn2+n) lim n → ∞ ( n n 2 + 1 + n n 2 + 2 + ⋯ + n n 2 + n )
    • 放缩成通项不同,但易求和的
      limn(1n2+n+1+1n2+n+2++1n2+n+n) lim n → ∞ ( 1 n 2 + n + 1 + 1 n 2 + n + 2 + ⋯ + 1 n 2 + n + n )
  • 凑积分定义
    limn(1n+1+1n+2++1n+n) lim n → ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n )
  • 级数
    • 先导后积、先积后导
    • 套级数求和公式(无中生有一个 x)
      limn(12+322++2n12n) lim n → ∞ ( 1 2 + 3 2 2 + ⋯ + 2 n − 1 2 n )
    • 逆用级数收敛必要条件
      limn2nn! lim n → ∞ 2 n n !
  • 给出递推式
    1. 证极限存在:单调、有界
    2. 设极限为 A,对递推式两边取极限: xn x n xn1xn2 x n − 1 、 x n − 2 等都是趋向 A,得到 A 的等式
两种放缩

对和式 ni=1ui=u1++un ∑ i = 1 n u i = u 1 + ⋯ + u n 放缩

  • n 无穷大
    numinni=1uinumax n ⋅ u m i n ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x
  • n 有限,且 ui0 u i ≥ 0
    1umaxni=1uinumax 1 ⋅ u m a x ≤ ∑ i = 1 n u i ≤ n ⋅ u m a x

主要是根据谁在和式中“起决定性作用”
[例] f(x)=limn1+xn+(x22)nnx0 f ( x ) = lim n → ∞ 1 + x n + ( x 2 2 ) n n ( x ≥ 0 ) 的表达式

算函数极限
  • 000 0 0 , ∞ ∞ , 0 ⋅ ∞
    • 倒代换:头轻脚重 “ Δ Δ 头重脚轻 “
    • 有理化:根号差
    • 符号问题: x<0x2=|x|=x x < 0 , x 2 = | x | = − x
      若 x 是负数,要把根号外的 x 放进根号内,要添负号,或作换元 t = -x。例: limx4x2+x+1+x+1x2+sinx lim x → − ∞ 4 x 2 + x + 1 + x + 1 x 2 + sin ⁡ x
    • 等价无穷小的广义化
      例: lnx=ln(1+x1) ln ⁡ x = ln ⁡ ( 1 + x − 1 ) ~ x1 (x1) x − 1   ( x → 1 )
  • ∞ − ∞
    • 本身有分母:通分
    • 没分母:提公因式、倒代换 产生分母
  • 0001 ∞ 0 , 0 0 , 1 ∞
    • 幂指函数:变形,都放到 e 的指数上
    • 重要极限:强行凑 1
泰勒公式
  • AB A B 型:上下同阶。保证展开后,分子的无穷小项 o(xk) o ( x k ) 是分母的高阶无穷小
  • AB A − B 型:幂次最低。直到系数不等的 x 的最低幂次

分母的泰勒展开:本质是用 A - B 型,构造差函数的等价无穷小(注意幂次最低原则),无穷小项直接扔掉,如 xsinx x − sin ⁡ x ~ 16x3 1 6 x 3
可先用泰勒展开再平方,如: sin2x=[xx33!+o(x3)]2 sin 2 ⁡ x = [ x − x 3 3 ! + o ( x 3 ) ] 2

已知极限,求另一极限

凑所求极限式

  • 若没告诉你已知极限值是多少,却问另一个极限的具体值,可乘个无穷小让已知极限变 0
    例: limx0xsinx+f(x)x4 lim x → 0 x − sin ⁡ x + f ( x ) x 4 存在,则 limx0x3f(x)=? lim x → 0 x 3 f ( x ) = ?
    此时可: limx0xsinx+f(x)x4x=0 lim x → 0 x − sin ⁡ x + f ( x ) x 4 ⋅ x = 0 → 创造具体值
重要结论

在 x 的同一趋向过程:

  • limf(x)g(x) lim f ( x ) g ( x ) 存在,则 limg(x)=0limf(x)=0 lim g ( x ) = 0 ⇒ lim f ( x ) = 0
  • limf(x)g(x)=C0 lim f ( x ) g ( x ) = C ≠ 0 ,则 limf(x)=0limg(x)=0 lim f ( x ) = 0 ⇒ lim g ( x ) = 0
同时趋向问题
  • limx0[(1+1x)x]xlimx0ex lim x → 0 [ ( 1 + 1 x ) x ] x ≠ lim x → 0 e x

没有这种极限运算法则!
等价无穷小的本质是极限乘法,不违反同时趋向

函数连续、间断的概念

举反例

  • (类)狄利克莱函数
断点类型
  • 无定义点
  • 分段点
已知连续,求参数

左极限 = 右极限

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值