信息检索的PR曲线(Precision-Recall Curve)作图

Notes

多模态检索中常用几种评价指标:

引用 [1] 里介绍的 PR 曲线的例子是只针对一个 query sample 而言的,不好说代表性。
照师兄的说法,现在有一种画法是:枚举 top-R 之 R,对每一个 R,都算一次
y i = m e a n ( 各 q u e r y   s a m p l e 的 「 P r e c i s i o n @ R 」 ) y_i = mean(各query\ sample的「Precision@R」) yi=mean(query samplePrecision@R)

x i = m e a n ( 各 q u e r y   s a m p l e 的 「 R e c a l l @ R 」 ) x_i=mean(各query\ sample的「Recall@R」) xi=mean(query sampleRecall@R)
然后以 ( x i , y i ) (x_i, y_i) (xi,yi) 作图。即P对应平均 Precision@RR对应平均 Recall@R
他给的源程序是 matlab 代码,转写成 python 备份。

Code

python

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.distance import cdist

# 画 P-R 曲线
def pr_curve(qF, rF, qL, rL, what=0, topK=-1):
    """Input:
    what: {0: cosine 距离, 1: Hamming 距离}
    topK: 即 mAP 中的 position threshold,只取前 k 个检索结果,默认 `-1` 是全部,见 [3]
    """
    n_query = qF.shape[0]
    if topK == -1 or topK > rF.shape[0]:  # top-K 之 K 的上限
        topK = rF.shape[0]

    Gnd = (np.dot(qL, rL.transpose()) > 0).astype(np.float32)
    if what == 0:
        Rank = np.argsort(cdist(qF, rF, 'cosine'))
    else:
        Rank = np.argsort(cdist(qF, rF, 'hamming'))

    P, R = [], []
    for k in range(1, topK + 1):  # 枚举 top-K 之 K
        # ground-truth: 1 vs all
        p = np.zeros(n_query)  # 各 query sample 的 Precision@R
        r = np.zeros(n_query)  # 各 query sample 的 Recall@R
        for it in range(n_query):  # 枚举 query sample
            gnd = Gnd[it]
            gnd_all = np.sum(gnd)  # 整个被检索数据库中的相关样本数
            if gnd_all == 0:
                continue
            asc_id = Rank[it][:k]

            gnd = gnd[asc_id]
            gnd_r = np.sum(gnd)  # top-K 中的相关样本数

            p[it] = gnd_r / k
            r[it] = gnd_r / gnd_all

        P.append(np.mean(p))
        R.append(np.mean(r))

	# 画 P-R 曲线
    fig = plt.figure(figsize=(5, 5))
    plt.plot(R, P)  # 第一个是 x,第二个是 y
    plt.grid(True)
    plt.xlim(0, 1)
    plt.ylim(0, 1)
    plt.xlabel('recall')
    plt.ylabel('precision')
    plt.legend()
    plt.show()

matlab

  • 师兄给的 matlab 源码
function [map, recallA] = myPr(sim_x, L_tr, L_te, mark)
j = 0;
for R = 10:100:2110
    j = j + 1;
    [~, cat] = size(L_tr);
    multiLabel = cat > 1;
    if multiLabel 
        Label = L_tr * L_te';
    end
    tn = size(sim_x,2);  % query 的样本数
    ap = zeros(tn,1);
    recall = zeros(tn,1);
    for i = 1 : tn
        if mark == 0
            % inxx 保存与第 i 个测试样本 hammingDist 最小的前 R 个 database 样本所在的位置
            [~, inxx] = sort(sim_x(:, i), 'descend');
        elseif mark == 1
            [~, inxx] = sort(sim_x(:, i));
        end

        if multiLabel
           inxx = inxx(1: R);  
           ranks = find(Label(inxx, i) > 0)';
        else
           inxx = inxx(1: R);
           tr_gt = L_tr(inxx);  % tr_gt 为前 R 个实例的标签
           ranks = find(tr_gt == L_te(i))';  % ranks 为 groundtrue
        end 
        % compute AP for the query
        if isempty(ranks)
            ap(i) = 0;
        else
            % ap(i) = sum((1: length(ranks)) ./ ranks) / length(ranks);
            if multiLabel
                % #relavant-in-result / #result
                ap(i) = length(ranks) / length(inxx);
                % #relavant-in-result / #relavant-in-all
                recall(i) = length(ranks) / length(find(Label(:, i)>0));
            else
                ap(i) = length(ranks) / length(inxx);
                recall(i) = length(ranks) / length(find(L_tr == L_te(i)));
            end
            
        end
    end
    map(j) = mean(ap);
    recallA(j) = mean(recall);
end

References

  1. Evaluation of Information Retrieval Systems
  2. 跨模态检索评价指标(evaluations of cross-modal retrieval)
  3. mAP(@R)计算代码
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值