梯度下降法

梯度下降

目的:解决优化问题——optimization problem

在这里插入图片描述

在这里插入图片描述

Tip1:调节学习率

——小心调节你的学习率

  • 学习率太低——需要迭代次数比较大
  • 学习率太高——错过最佳点,在最优点附近震荡

当你的参数(特征)高于三维时,我们没有办法观测到函数情况,进而进行学习率的调节

我们可以转换为观测——参数变化与Loss的变化

在这里插入图片描述

因此,在做梯度下降的时候,应该把参数变化与Loss函数的变化做出来

自适应学习率

——自适应学习率

一个简单的原理:学习率一定是越小越准确,虽然步子小,但是小步子一定能够到达最小值

基于原理:

  • 每隔一些epochs之后,降低学习率
  • 一开始的时候,我们假设离最佳点非常远,所以我们要用大步子去进行迈进
  • 迈进几步之后呢,我们就离最佳点近了,这个时候,我们就降低我们的学习率,使得我们能够到达最佳点

Vanilla Gradient Descent

根据迭代次数 t的进行缩小的学习率

学习率是 t dependent的函数
η t = η t + 1 g t = ∂ L ( ω t ) ∂ ω ω t + 1 = ω t − η t g t \eta^t=\frac{\eta}{\sqrt{t+1}}\\ \\ g^t=\frac{\partial L(\omega^t)}{\partial\omega}\\ \\ \omega^{t+1}=\omega^t-\eta^tg^t\\ ηt=t+1 ηgt=ωL(ωt)ωt+1=ωtηtgt
随着迭代次数越来越大,这个学习率就会越来越小

更好的方法是——实现“因材施教”

——Learning rate cannot be one-size-fits-all

——Giving different parameters different learning rates.

给与不同的参数不一样的学习率

Adagrad

  • Divide the learning rate of each parameter by the root mean square of its previous derivatives.

将每个参数的学习率除以其先前导数的均方根。

ω t + 1 = ω t − η t σ t g t \omega^{t+1}=\omega^{t}-\frac{\eta^t}{\sigma^t}g^t ωt+1=ωtσtηtgt
σ t \sigma^t σt ——过去 所有 微分值的均方根

在这里插入图片描述

η t = η t + 1 σ t = 1 t + 1 ∑ i = 0 t g ( i ) 2 \eta^t=\frac{\eta}{\sqrt{t+1}}\\ \sigma^t=\sqrt{\frac{1}{t+1}\sum^t_{i=0}g(i)^2}\\ ηt=t+1 ησt=t+11i=0tg(i)2
因此两项相除得——
η t σ t = η ∑ i = 0 t g ( i ) 2 \frac{\eta^t}{\sigma^t}=\frac{\eta}{\sqrt{\sum_{i=0}^tg(i)^2}} σtηt=i=0tg(i)2 η
因此得到Adagrad最后的迭代式子
ω t + 1 = ω t − η ∑ i = 0 t g ( i ) 2 g t \omega^{t+1}=\omega^t-\frac{\eta}{\sqrt{\sum_{i=0}^tg(i)^2}}g^t ωt+1=ωti=0tg(i)2 ηgt
——Adagrad强调了一种反差的效果

二次微分

当函数参数只有一个变量时,会发现,这里的微分越大,说明这个点离最低点(最优解)最远

在这里插入图片描述

如果有多个参数时,这个东西就不成立

——同时考虑多个参数,我们怎么思考这件事呢?

将二次微分考虑进来

在这里插入图片描述

我们需要将a点一次微分和二次微分的商和c点一次微分和二次微分的商,一同做考虑这件事

只有结合两次微分,才能真正反映,你当前所在的位置和最低点的距离

联系

在Adagrad里面呢
g t → ∣ F i r s t     d e r i v a t i v e ∣ ∑ i = 0 t ( g i ) 2 → ∣ S e c o n d     d e r i v a t i v e ∣ g^t\rightarrow |First\,\,\,derivative|\\ \sqrt{\sum_{i=0}^t(g^i)^2}\rightarrow |Second\,\,\,derivative| gtFirstderivativei=0t(gi)2 Secondderivative

  • 为什么需要用一次微分的均方根估算二次微分?
    • 在数据量较大的环境下,计算二次微分的时间成本较大
    • 能避免二次微分为0的情况吗???

Tip2: Stochastic Gradient Descent

能让你的Traning更快一点

——原来的梯度下降在Loss Function里,考虑了所有的样本的误差值,梯度L也是考虑上了所有样本

——Stochastic的梯度下降呢,我们只考虑一个样本(随机或者按顺序采样),梯度也只计算这一单一样本,就将参数进行Update

在这里插入图片描述

——原始的梯度下降看完所有Example之后走了一步

——Stochastic的梯度下降,看完所有Example之后,走了样本数目这么多步

在这里插入图片描述

Tip3: 特征规约

——特征缩放

让考虑的特征拥有一样的度量

在这里插入图片描述

避免某个特征对预测的影响特别大

Why

对梯度下降有什么影响吗?

——长椭圆形状的error surface,在不进行AdaGrad的时候,你会比较难搞定他

——而进行了Scaling之后呢,error surface就呈现出正圆形的分布

在这里插入图片描述

——做完scaling之后呢,会使得梯度下降地比较有效率

How

——本质上是数据规范化的内容

数据预处理

方法一:

  • 对于某一个维度的数据
  • 求平均值 m i m_i mi
  • 求标准差 σ i \sigma_i σi

v ′ = v − m i σ i v'=\frac{v-m_i}{\sigma_i} v=σivmi

——做完这件事之后,你会发现,该维度的数据呈现正态分布

Warning of Maths

泰勒级数Review

h ( x ) = ∑ k = 0 ∞ h ( k ) ( x 0 ) k ! ( x − x 0 ) k = h ( x 0 ) + h ′ ( x 0 ) ( x − x 0 ) + h ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . h(x)=\sum_{k=0}^\infty \frac{h^{(k)}(x_0)}{k!}(x-x_0)^k\\ =h(x_0)+h'(x_0)(x-x_0)+\frac{h''(x_0)}{2!}(x-x_0)^2+... h(x)=k=0k!h(k)(x0)(xx0)k=h(x0)+h(x0)(xx0)+2!h′′(x0)(xx0)2+...

x → x 0 x\rightarrow x_0 xx0时, x − x 0 x-x_0 xx0 就会比 ( x − x 0 ) 2 (x-x_0)^2 (xx0)2大得多,我们就可以截断进行近似
h ( x ) ≈ h ( x 0 ) + h ′ ( x 0 ) ( x − x 0 ) h(x)\approx h(x_0)+h'(x_0)(x-x_0) h(x)h(x0)+h(x0)(xx0)

多变量的泰勒级数

h ( x , y ) = h ( x 0 , y 0 ) + ∂ h ( x 0 , y 0 ) ∂ x ( x − x 0 ) + ∂ h ( x 0 , y 0 ) ∂ y ( y − y 0 ) + . . . h(x,y)=h(x_0,y_0)+\frac{\partial h(x_0,y_0)}{\partial x}(x-x_0)+\frac{\partial h(x_0,y_0)}{\partial y}(y-y_0)+... h(x,y)=h(x0,y0)+xh(x0,y0)(xx0)+yh(x0,y0)(yy0)+...

后面接一些类似的二阶偏导等的式子

得近似值
h ( x , y ) ≈ h ( x 0 , y 0 ) + ∂ h ( x 0 , y 0 ) ∂ x ( x − x 0 ) + ∂ h ( x 0 , y 0 ) ∂ y ( y − y 0 ) h(x,y)\approx h(x_0,y_0)+\frac{\partial h(x_0,y_0)}{\partial x}(x-x_0)+\frac{\partial h(x_0,y_0)}{\partial y}(y-y_0) h(x,y)h(x0,y0)+xh(x0,y0)(xx0)+yh(x0,y0)(yy0)

形式推导

在这里插入图片描述

  • 我们把 ( θ 1 − a ) (\theta_1-a) (θ1a) ( θ 2 − b ) (\theta_2-b) (θ2b) 当作 Δ θ 1 \Delta\theta_1 Δθ1 Δ θ 2 \Delta\theta_2 Δθ2

  • 就相当于,在这个Circle里面,存在一个 v e c t o r ( Δ θ 1 , Δ θ 2 ) vector(\Delta\theta_1 ,\Delta\theta_2 ) vector(Δθ1,Δθ2) v e c t o r ( u , v ) vector(u,v) vector(u,v)做内积,使得 L ( θ ) L(\theta) L(θ)最小

  • 那么这个 ( Δ θ 1 , Δ θ 2 ) (\Delta\theta_1 ,\Delta\theta_2 ) (Δθ1,Δθ2) ( u , v ) (u,v) (u,v) 反向,而且长度在circle极限

在这里插入图片描述

在这里插入图片描述

——最后得到的式子,实质上就是梯度下降

——但这个式子的前提是,泰勒级数给我们的估计是足够精确的

——只有当上图的red circle足够小的时候,才有这样的式子成立

同时呢,我们的学习率 η \eta η 和 半径 是成正比的,因此学习率不能太大

——因此,理论上,我们的学习率需要无穷小的情况下,才会有这样的式子成立;虽然实操上,只要足够小就可以

——因此,理论上,提出通过增加泰勒式子的二次式,这样我们的学习率可以稍微设置大一点

但是在实际上,我们会增加很多运算,增加二次微分,增加Hession matrix和Hession matrix的逆等等,因此在deep learning并没有那么的使用

梯度下降法的限制

  • 只能找到局部最优,寻找不到全局最优
  • 有可能卡在不是最优点,卡在微分值为0的位置
  • 或者微分值算出来很小,存在误差,但这里卡住了

在这里插入图片描述

——为什么我的梯度下降,Loss Function不降反升呢?

有可能处于的位置是:

  1. 前面比较矮,右边也比较矮
  2. 这个时候,程序会往右前方进去
  3. 但是,右前方是个梯度升高的地方
  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Caaaaaan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值