分类——生成模型

分类:概率生成模型

Classification: Probabilistic Generative Model

回归做分类?NO!

——用Regreesion强制做Classification

——NO!!!!

以二分类举例的情况下,如果回归的数值越接近于1,则我们认为是正类;否则为负类。

在这样的训练集上进行回归,某种程度上是能够拟合出一个较好的分界,使得上述成立。

但是,也有可能是,属于某个正类的回归预测值非常非常大,这样的情况下,它会error地得到另一个分界

因为回归定义分界的好坏是(Loss Function),是点到线的距离差的平方和(某种Loss Function)

这种定义对分类来说,是不适用的

在这里插入图片描述

而且,这种情况下,相当于默认了某种Class的关系

比如,在多分类问题里:

——我们将Class 1 means the target is 1; Class 2 means the target 2;Class 3 means the target 3;…

在这种情况下,我们有可能会认为第二类与第三类比较近,第四类和第三类比较远,但实际上,我们的类上并不存在这样的关系。

做法

  • Function(Model)

    输入x后,若f(x)>0 则输出类型1;否则输出类型2

  • Loss Function
    L ( f ) = ∑ n δ ( f ( x n ) ≠ y ^ n ) L(f)=\sum_n\delta(f(x^n)\neq \hat{y}^n) L(f)=nδ(f(xn)=y^n)
    我们希望它预测错误的次数越少越好

  • Find the best function:

    • Example:Perceptron,SVM

在这里插入图片描述

生成模型

利用条件概率——贝叶斯公式进行分类

假设给我一个x,那么这个x属于Class 1的几率就为
P ( C 1 ∣ x ) = P ( C 1 ∗ x ) P ( x ) = P ( x ∣ C 1 ) P ( C 1 ) P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) P(C_1|x)=\frac{P(C_1*x)}{P(x)}=\frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1)+P(x|C_2)P(C_2)} P(C1x)=P(x)P(C1x)=P(xC1)P(C1)+P(xC2)P(C2)P(xC1)P(C1)
属于哪个类的概率越大,则x属于这个类

——如何得到 P ( x ∣ C 1 ) P(x|C_1) P(xC1)

高斯分布

假设说,我们没有见过这个x,那么在训练集上,这个 P ( x ∣ C 1 ) P(x|C_1) P(xC1)的概率就是显而易见为0——这是不正确的!

因为这个x其实是——特征向量(A feature vector)

我们可以理解为——我们的训练集是,从一个Gaussian的分布里(也可能是别的分布),采样出来的点,我们通过研究采样的点,来找到Gaussian的分布

——高斯分布(即正态分布)——也可能是别的密度分布函数

——本质上,我们输入一个vector(特征向量),那么在分布里,我们就能找到,采样到这个向量的可能性(即分布中常提到的密度分布)

  • 输入:vector x
  • 输出:Sampling x的可能性

这个分布函数的形状,取决于mean μ \mu μ covariance matrix Σ \Sigma Σ

——即取决于均数和协方差矩阵

——注意,这里的均数 μ \mu μ也是一个vector

f μ , Σ ( x ) = 1 ( 2 π ) D / 2 1 ∣ Σ ∣ 1 / 2 e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) f_{\mu,\Sigma}(x)=\frac{1}{(2\pi)^{D/2}}\frac{1}{|\Sigma|^{1/2}}exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)) fμ,Σ(x)=(2π)D/21∣Σ1/21exp(21(xμ)TΣ1(xμ))

在这里插入图片描述

如何找到 μ \mu μ Σ \Sigma Σ

Maximum Likelihood

比如你有79个点,那么就这个分布采样出这79个点的概率是最大的

——Likelihood Function

L ( μ , Σ ) = f μ , Σ ( x 1 ) f ( x 2 ) . . . f ( x 79 ) L(\mu,\Sigma)=f_{\mu,\Sigma}(x_1)f(x_2)...f(x_{79}) L(μ,Σ)=fμ,Σ(x1)f(x2)...f(x79)

我们希望找到 μ ∗ , Σ ∗ \mu^{*},\Sigma^* μ,Σ, 使得 a r g max ⁡ μ , Σ L ( μ , Σ ) arg\max_{\mu,\Sigma}L(\mu,\Sigma) argmaxμ,ΣL(μ,Σ)
μ ∗ = 1 79 ∑ n = 1 79 x n Σ ∗ = 1 79 ∑ n = 1 79 ( x n − μ ∗ ) ( x n − μ ∗ ) T \mu^*=\frac{1}{79}\sum_{n=1}^{79}x^n\\ \Sigma^*=\frac{1}{79}\sum_{n=1}^{79}(x^n-\mu^*)(x^n-\mu^*)^T μ=791n=179xnΣ=791n=179(xnμ)(xnμ)T
在这里插入图片描述

Why Called 生成模型

我们可以计算出每个x出现的概率,我们就知道每一个x的分布,我们就可以用这个分布来产生x,采样x
P ( x ) = P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) P(x)=P(x|C_1)P(C_1)+P(x|C_2)P(C_2) P(x)=P(xC1)P(C1)+P(xC2)P(C2)
——全概率公式

修改模型

不同的类其实可以共用一个协方差矩阵

——因为协方差矩阵和特征size的平方成正比

因此协方差矩阵的增长非常快,如果不同的类给予不同的协方差矩阵

那么Model的参数过多,参数太多则Variance就大,那么就容易overfitting

How to Calculate

Find μ 1 , μ 2 , Σ \mu^1,\mu^2,\Sigma μ1,μ2,Σ maximizing the likelihood L ( μ 1 , μ 2 , Σ ) L(\mu^1,\mu^2,\Sigma) L(μ1,μ2,Σ)
L ( μ 1 , μ 2 , Σ ) = f μ 1 , Σ ( x 1 ) f μ 1 , Σ ( x 2 ) . . . f μ 1 , Σ ( x 79 ) ∗ f μ 2 , Σ ( x 80 ) . . . f μ 2 , Σ ( x 140 ) L(\mu^1,\mu^2,\Sigma)=f_{\mu^1,\Sigma}(x^1)f_{\mu^1,\Sigma}(x^2)...f_{\mu^1,\Sigma}(x^{79})*f_{\mu^2,\Sigma}(x^{80})...f_{\mu^2,\Sigma}(x^{140}) L(μ1,μ2,Σ)=fμ1,Σ(x1)fμ1,Σ(x2)...fμ1,Σ(x79)fμ2,Σ(x80)...fμ2,Σ(x140)

μ 1 , μ 2 = 1 79 ∑ n = 1 79 x n \mu^1,\mu^2=\frac{1}{79}\sum_{n=1}^{79}x^n\\ μ1,μ2=791n=179xn

Σ = 79 140 Σ 1 + 61 140 Σ 2 \Sigma=\frac{79}{140}\Sigma^1+\frac{61}{140}\Sigma^2 Σ=14079Σ1+14061Σ2

在这里插入图片描述

——选用所有特征之后的结果

在这里插入图片描述

朴素贝叶斯做法

在这里插入图片描述

不同模型的选择

——你永远可以选择你喜欢的

你选择参数少的——Bias大,Variance小

你选择参数多的——Bias小,Variance大

——对于二值特征,你不会假设它为高斯分布,因为没有办法使得它合理

而是假设其为伯努利分布

——假设所有的特征都是独立同分布的很切合实际

那么朴素贝叶斯就会表现得非常好

后验概率

P ( C 1 ∣ x ) = P ( C 1 ∗ x ) P ( x ) = P ( x ∣ C 1 ) P ( C 1 ) P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) = 1 1 + P ( x ∣ C 2 ) P ( C 2 ) P ( x ∣ C 1 ) P ( C 1 ) = 1 1 + e x p ( − z ) = σ ( z ) P(C_1|x)=\frac{P(C_1*x)}{P(x)}=\frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1)+P(x|C_2)P(C_2)}\\ =\frac{1}{1+\frac{P(x|C_2)P(C_2)}{P(x|C_1)P(C_1)}}=\frac{1}{1+exp(-z)}=\sigma(z) P(C1x)=P(x)P(C1x)=P(xC1)P(C1)+P(xC2)P(C2)P(xC1)P(C1)=1+P(xC1)P(C1)P(xC2)P(C2)1=1+exp(z)1=σ(z)

其中 z = l n P ( x ∣ C 1 ) P ( C 1 ) P ( x ∣ C 2 ) P ( C 2 ) 其中z=ln\frac{P(x|C_1)P(C_1)}{P(x|C_2)P(C_2)} 其中z=lnP(xC2)P(C2)P(xC1)P(C1)

1 1 + e x p ( − z ) 称之为 S i g m o i d     f u n c t i o n \frac{1}{1+exp(-z)}称之为Sigmoid\,\,\,function 1+exp(z)1称之为Sigmoidfunction

image-20220927202730714

在这里插入图片描述

P ( C 1 ∣ x ) = σ ( w ∗ x + b ) P(C_1|x)=\sigma(w*x+b) P(C1x)=σ(wx+b)

而你会发现,你在生成模型这里,我们需要从训练集中估计出N1,N2, μ 1 \mu^1 μ1 , μ 2 \mu^2 μ2, Σ \Sigma Σ ,然后去拥有 w 和 b

那么我们为什么不直接找到w 和 b呢?

——w是一个vector

——敬请期待下一章

——逻辑斯特回归

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Caaaaaan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值