题目
A城市有一个巨大的圆形广场,为了绿化环境和净化空气,市政府决定沿圆形广场外圈种一圈树。园林部门 得到指令后,初步规划出n个种树的位置,顺时针编号1到n。并且每个位置都有一个美观度Ai,如果在这里种树就可以得到这Ai的美观度。但由于A城市土壤 肥力欠佳,两棵树决不能种在相邻的位置(i号位置和i+1号位置叫相邻位置。值得注意的是1号和n号也算相邻位置!)。
最终市政府给园林部门提供了m棵树苗并要求全部种上,请你帮忙设计种树方案使得美观度总和最大。如果无法将m棵树苗全部种上,给出无解信息。
输入
输入的第一行包含两个正整数n、m。
第二行n个整数Ai。
数据规模和约定
对于全部数据,满足1< =m< =n< =30;
其中90%的数据满足m< =n< =20
-1000< =Ai< =1000
输出
输出一个整数,表示最佳植树方案可以得到的美观度。如果无解输出“Error!”,不包含引号。
样例输入
7 3
1 2 3 4 5 6 7
样例输出
15
解题思路
该题目需要深度优先进行搜索,需要考虑的是:树木之间有间隔且首尾不想接。在满足该条件的情况下,不断计算美观度,如果美观度大于当前最大值,则替换。最后,输出美观度最大值即可。
代码
#include<stdio.h>
int A[30],b[30];
int n,m,max=0;
void DFS(int left, int num, int app){
int i;
if (left!=0)
{
for (i=num+2;i<(n-(left-1)*2);i++)
{
if (b[0]==1 && i==(n-1))
break;
else if (b[i-1]==1 || ((i+1)<n && b[i+1]==1))
continue;
b[i] = 1;//表示该位置有树占位了
DFS(left-1,i,app+A[i]);//下一棵数目的位置
b[i] = 0;//回溯
}
}
else
max = (max<app)?app:max;
}
int main()
{
int i,j;
scanf("%d %d",&n,&m);//n个位置,m个树苗
for (i=0;i<n;i++)
scanf("%d",&A[i]);
for (i=0;i<(n-2*(m-1));i++)
{
for (j=0;j<n;j++)
b[j] = 0;//初始化
b[i] = 1;//第一颗树的位置
DFS(m-1,i,A[i]);//第一棵数目放在第i个位置上
}
if (max==0)
printf("Error!");
else
printf("%d",max);
return 0;
}