近两年值得阅读的十篇医疗图像分割文献

本文列举了近年来十篇重要的医疗图像分割文献,涉及CE-Net、CA-Net、FCA-Net等网络结构,利用深度学习、注意力机制、多尺度特征等方法,提升2D和3D医疗图像的分割精度。这些方法在皮肤病变、肺部、血管、细胞轮廓等分割任务中取得显著效果,有助于医学图像分析和诊断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 题目:CE-Net: Context Encoder Network for 2D Medical Image Segmentation

投稿周期:稿件于 2018 年 12 月 24 日收到; 2019 年 2 月 24 日修订;2019年3月4日接受。出版日期2019年3月7日。

期刊:IEEE Transactions on Medical Imaging,SCI一区

论文网址:CE-Net: Context Encoder Network for 2D Medical Image Segmentation | IEEE Journals & Magazine | IEEE Xplore

推荐指数:★★★★★(五星是满分)

推荐理由:轻量级网络结构,且具有很好的泛化能力。

1.亮点

(1)级联不同扩张率的空洞卷积以构成密集空洞卷积(dense atrous convolution, DAC)块,该模块以通过四个级联分支用不同扩张率的空洞卷积来捕获更广泛和更深层次的语义特征,除此之外,利用残差连接来防止梯度消失。模型参数少的同时,提高了特征捕获效率。

(2)提出一种基于空间金字塔池化的残差多核池化(residual multi-kernel pooling,RMP)块,该块通过采用不同核大小的池化操作,进一步对从DAC模块提取的特征以进行多尺度上下文特征进行编码,无需额外的学习权重。总之,该文章提出 DAC 块来提取具有多尺度的丰富特征表示,然后是RMP块,用于通过多尺度池化操作获取更多上下文信息。

2.重要性

医学图像分割是医学图像分析中的一个重要步骤。当前基于卷积神经网络的医学图像分割方法所面临一下问题:连续池化和跨步卷积操作导致了一些空间信息的丢失。为解决该问题,本文提出一种上下文编码器网络(CE-Net)来捕获更多高级信息并保留用于 2D 医学图像分割的空间信息。

3.结果

(1)可视化展示:肺分割、血管检测和细胞轮廓分割的可视化结果。

(2)评估指标结果

a.视盘检测结果

b.肺部分割结果

c.细胞轮廓分割结果

二. 题目:CA-Net: Comprehensive Attention ConvolutionalNeural Networks for Explainable Medical Image Segmentation

投稿周期:稿件于 2020 年 9 月 17 日收到; 2020 年 10 月 25 日接受。出版日期 2020 年 11 月 2 日。

期刊:IEEE Transactions on Medical Imaging,SCI一区

论文网址:CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation | IEEE Journals & Magazine | IEEE Xplore

推荐指数:★★★★★(五星是满分)

推荐理由:该文章综合了当前较为流行的多种注意力机制。

1.亮点

(1) 提出一种新颖的基于注意力的综合网络(CA-Net),以充分利用空间、通道和尺度等注意力机制。

(2)联合空间注意力块:该机制被用来加强特征图上的感兴趣区域,同时抑制潜在的背景或不相关的部分。

(3)通道注意力:该机制可以突出相关的特征通道以有效利用特征信息,同时抑制不相关的通道。

(4)尺度注意力块:组合多尺度特征信息来获取更精确的特征表征,对分割特定的图像可确定其最合适的特征尺度。

2.重要性

使用综合注意力来获得本文网络的良好可解释性,其中分割结果可以归因于相关的

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值