python数据分析pandas 33-40

Pandas

Pandas的数据结构,主要包含两个,Series和Dataframe

Series

Series 是一种一维标记的数组型对象,能够保存任何数据类型,包含数据和索引。

创建方法:

  • 使用列表 s1 = pd.Series([1,2,3,4])
  • 使用数组s1 = pd,Series(np.arange(1,10))

Series的首字母大写

  • 可以指定索引s2 = pd.Series([1,2,3,4],index=[“a”,“b”,“c”,“d”]) ,但索引长度必须相同

在这里插入图片描述
还可以通过字典来创建,字典的顺序可以通过index参数来指定:

在这里插入图片描述


Series的基本用法

  • isnull()判断是否为空
  • notnull()判断是否不为空
  • 可以使用下标进行取数,如果取多个,要用中括号括起来,逗号分开
  • 可以使用标签名进行取数
  • 可以使用下标或者标签进行切片取数(下标不包含末端,标签切片包含)
  • 可以使用布尔索引取数
  • 可以为Series对象设置对象名 s1.name = 'temp'
  • 可以为Series对象设置索引名称s1.index.name ='year'
    -在这里插入图片描述
  • 可以通过head()方法读取头部数据 s1.head(3),默认选择前五行,可以指定行数
  • 可以通过tail()方法读取尾部数据

DataFrame

DataFrame是一个表格型的数据结构,含有一组有序的列,每列可以使不同类型的值。
DataFrame既有行索引,也有列索引

字典构造DataFrame
  • 通过列表构造的字典来构造DataFrame:
    在这里插入图片描述
  • 通过Series构成的字典构造dataframe

在这里插入图片描述

  • 通过字典嵌套字典构造dataframe
    在这里插入图片描述
列表构造DataFrame
  • 二维数组来构造DataFrame
  • 字典构成的列表来构造DaraFrame
  • Series构成的列表来构造DataFrame

DataFrame的基本用法
  • 转置 pd1.T
  • 通过列索引获取数据(Series)类型
  • 增加列数据
  • 删除列 del(pd1['b'])
    在这里插入图片描述
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值