最短路径模板——dijkstra算法

dijkstra算法

有向带权图的单源最短路,适用于找所有点到某一个顶点 i 的最短路径。
适用范围:所有边权都是正数的图。且允许存在回路。
分为朴素dijkstra算法堆优化dijkstra算法两种。

dijkstra算法思想:
将顶点分为两类:已经统计过最短路径的顶点集合s和没有统计过最短路径的顶点。
利用贪心的思想,每次从不在 集合s 的顶点中找到距离 i 最近的顶点 j,将其加入s,然后更新从 j 出发能到达的点 到 顶点i 的距离,取最小值,这样循环n次,n个顶点都加入集合s了。

朴素算法和堆优化算法的算法差距就在于 从不在 集合s 的顶点中找到距离 i 最近的顶点 j。

朴素算法适用于稠密图,采用邻接矩阵存储,时间复杂度O(n2)

g[i][j]=x,表示i->j的距离为x

堆优化算法适用于稀疏图,采用邻接表存储,时间复杂度O(mlogn)

n 点数 m 边数

分析:重边、自环对dijkstra算法的影响

环路。
自环:自身到自身的情况;以及环路
自己肯定不会往自己更新,只会由别人更新到自己,因为当更新自己到别的点的距离时,自己已经加入集合s,成为已经统计过最短距离的点了,不管更不更新都无效了。
环路是自环的一般情况,假如图中存在环路,根据dijkstra的思想,他也不会走环当到达环的最后一个结点要走环时,说明前面的结点已经加入集合s了,不会再在考虑的范畴内了,也不会进行更新距离,因为只会考虑不在集合s中的情况

重边,好处理,两点之间有多条边时,取最短的边即可。

题目描述

给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1。

输入格式
第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
输出一个整数,表示1号点到n号点的最短距离

如果路径不存在,则输出-1。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

朴素dijkstra算法

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。

分析:
n个顶点,有向图最多n×(n-1)条)<不考虑重边、自环>,n2等于2.5e5,m等于1e5,m和n2一个级别,是稠密图,采用邻接矩阵存储。

#include <iostream>
#include <cstring>

using namespace std;

const int N=510,INF=0x3f3f3f3f;
int g[N][N];
int dis[N];
bool vis[N]; //判断该结点是否已加入统计完最短路径的集合s,初始时为false,均未加入
int n,m;//n个点 m条边

void dijkstra(int s)//处理 1号结点->所有结点 的最短路径
{
    memset(dis,0x3f,sizeof dis);
    dis[s]=0;  //s到自身距离为0
    //最多循环n次,每次选出一个距离1号结点最近的结点,可求出每个结点到s结点的距离
    //第一次选出的一定是s结点自己
    int num=n;
    while (num--) {
        int t=-1; //最终选出的t号结点,先初始化为小于1的结点(因为正常的结点是从1号开始)
        for (int i=1;i<=n;i++) {
            if (!vis[i] && (t==-1 || dis[i]<dis[t])) t=i;
        }
        
        if (t==n) break; 
        这题特定的结束条件:我们只需求1->n结点的最短路径。
        此时到了n号结点,但是仍不能确定dis[t]的值是不是无穷大,设想一下:n个顶点,0条边的情况。
        
        vis[t]=true;
        //接下来更新 s->其它结点 通过t结点的最短距离
        for (int i=1;i<=n;i++) {
            if (!vis[i]) { 只需更新不在集合中的结点,但是if条件可省略
                dis[i]=min(dis[i],dis[t]+g[t][i]);
            }  若i是已经记录过最短路径的点,因为t后于i加入集合,所以dis[i]<=dis[t]必然成立(贪心),所以这里不需要!vis[j]的判断
        }
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    //初始化邻接矩阵,规定自身到自身距离为0,但是求最短路时自环的边无效,可以不用初始化。
    memset(g,0x3f,sizeof g);
    //存储边
    int a,b,w;
    while (m--) {
        scanf("%d%d%d",&a,&b,&w);
        g[a][b]=min(g[a][b],w);//处理重边的情况,取最小值的边,同时忽略自环
    }
    dijkstra(1); //求1号点到所有点的最短距离。
    dis[n]==INF?cout<<"-1":cout<<dis[n]; //输出1号顶点到n号顶点的最短距离
    
    return 0;
}

dis数组存储的是s结点到所有结点的最短路径之和,它基于贪心的思想,每次选出一个距离s结点最近的结点。
因此在while(num–)num次循环的时候,每次选出的dis[ ]数组的值是依次增大的。

所以第31行到第34之间中if (!vis[i]) { dis[i]=min(dis[i],dis[t]+g[t][i]);} if 判断可以加也可以不加。
因为如果 i 结点是已经加入集合s的结点,那么必有dis[i] <= dis[t] ,且图中的边的权值都是正数,所以dis[i]是不会被影响的。

堆优化dijkstra算法

堆优化算法是将上面的21 22 23行进行优化,利用最小堆,每次直接取出距离最小的顶点,而不用再经过n次循环确定。

堆中需要记录的信息要由结点和距离,然后按照距离排序。因此利用pair<int,int>,第一个存储距离,第二个存储顶点编号。取出之后,就要进行更新距离,更新完后的距离要对dis数组进行修改,但是还有一个问题:如果该结点已经存在于堆中了,那就又要涉及堆的修改了,根据第二个关键字。堆的修改stl容器的堆无法实现,虽然可以通过手写堆实现,但是比较复杂。

因此,我们不修改了,将其再一次插入堆中,这样的做法是,不用手写堆了,但是堆中的元素冗余了,堆中可能存在多个相同顶点但是距离不同的元素,原来堆中最多可能存在N个元素(因为最多N个顶点),现在可能更多了,不过这没有影响,每个顶点只会根据它最短距离那次只更新距离一次,可以通过vis数组判断该顶点是不是已经加入已知最短路径的集合,从而避免重复。

另外有一点注意:
朴素做法中,最多循环n次就可以确定 i 结点到其它所有结点的最短距离。
堆优化做法中理论上应该也是的,但是我们用插入操作代替了修改了操作,所以也就是说可能一个结点会被重复好几次,虽然只会距离最短那一次有效,后面都通过vis数组过滤掉了,如果存在不可达顶点INF,那么它就要被放在所有顶点的后面了。
所以,堆优化做法有两个终止条件:队列不为空 || vis数组统计的true的个数小于n

数据范围:
1≤n,m≤1.5×105 ,
图中涉及边长均不小于0,且不超过10000。

m和n是一个级别的,是稀疏图,采用邻接表存储,堆优化。

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

typedef pair<int,int> PII; //first表示距离,second表示节点编号,按距离升序排列,每次选出最小的
priority_queue< PII,vector<PII>,greater<PII> >heap;
const int N=2e5,INF=0x3f3f3f3f;
int h[N],e[N],w[N],ne[N],idx;
int dis[N];
bool vis[N];
int n,m;

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

void dijkstra(int s)
{
    memset(dis,0x3f,sizeof dis);
    dis[s]=0;
    
    heap.push({dis[s],s});
    int num=n;   n在后面还要用到,不能修改,因此用num替代
    while(heap.size() && num) { //当队列不空时 或者 成功计数小于n次
        PII t=heap.top();
        heap.pop();
        //每次取出距离s最近的结点,然后开始更新距离
        int v=t.second,d=t.first;   //s->v的最短距离为d
        if (vis[v]) continue; //已经更新过,重复更新的情况跳过,否则
        vis[v]=true,num--;//还剩下n个点未统计
        for (int i=h[v];i!=-1;i=ne[i]) {
            int j=e[i];
            if (!vis[j] && dis[j]>d+w[i]) { //同理,if条件可省略
                dis[j]=d+w[i];
                heap.push({dis[j],j});
            }
        }
    }
}

int main()
{
    memset(h,-1,sizeof h);
    scanf("%d%d",&n,&m);
    int a,b,c;
    while (m--) {
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    dijkstra(1);
    dis[n]==INF?puts("-1"):printf("%d",dis[n]);
    
    return 0;
}

在第25行时,只把起点s放入堆中了,本来还应该剩下的顶点都放进去,然后进行更新就行了,但是stl中的堆不能实现按关键字更新,而是用了插入代替更新,所以剩下的点就不放入了,更新到时再放入。

关于27行的while判断,两个判断条件: while(heap.size() && num)
这是由于冗余元素的出现,使得n次循环就结束不可能,可能在n次循环里堆中的顶点是已经求过最短距离的点了,这次循环就是无效的,因此只有经过有效的n次循环才行,同时有条件heap.size()是为了防止堆在有效n次循环前就null了的情况,想像一种情况,非连通图:n各顶点,0条边,在第二次循环的时候堆就空了,却还要循环,PII t=heap.top();就出现了问题,会TLE。

如果是手写堆,可以更新的情况下,那么循环n次就够了,刚开始时就可以把所有点都放入堆中。

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离字典,将起始节点的距离设为0,其他节点的距离设为无穷大 distances = {node: sys.maxsize for node in graph} distances[start] = 0 # 初始化已访问节点的集合和未访以下是使用问节点D的集ijkstra合 visited = set() unvisited算法求解最短路径的Python = set(graph) while unvisited: # 代码示例: ```python class D选择当前ijkstra距: def __init__(self, graph离最小的节点 , start, current goal): self.graph = graph # 邻接表_node = min(unvisited, key=lambda self node: distances[node]) # 更新.start = start当前节点的 # 起邻居节点点 self.goal =的距离 goal # 终点 for neighbor in graph self.open[current_node]: _list = {} if neighbor in # open 表 self.closed_list unvisited: new_distance = distances[current_node] + = {} graph[current_node][neighbor # closed 表 self.open_list[start] if new_distance] = < distances[neighbor]: 0.0 # 将 distances[neighbor] = new_distance # 将当前起点放入 open_list 中 self.parent = {节点标记start:为已访 None} 问,并从未访问集合中移除 visited.add # 存储节点的父子关系。键为(current_node) 子节点, unvisited值为父.remove(current_node) return节点。方便做最 distances def print后_path(dist路径的ances,回 start溯 self.min, end): _dis = None # 根 # 最短路径的长度 def shortest_path据距离字典和终点节点(self): while True: ,逆向 if self打印路径.open_list is path = [end None: ] print('搜索 current_node =失败 end while current_node !=, 结束!') break distance start: , min_node = for neighbor in graph min(zip[current_node]: if(self.open_list distances[current.values(), self_node] ==.open_list.keys distances[neighbor())) #] + graph 取出距[neighbor][current_node]: 离最小的节点 self path.open_list.pop.append(min_node)(neighbor) current_node = neighbor break path.reverse() # 将其从 open_list 中去除 self print.closed("_list[minShortest_node] = path from", distance # 将节点加入 closed start, "to", end,_list ":", "->".join(path)) # 示例 中 if min_node == self.goal: # 如果节点为图的邻接矩阵终点 self.min_dis = distance 表示 graph shortest = { _path = [ 'Aself.goal]': {'B': # 5, 'C 记录从': 终1}, 点回溯的路径 'B

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值