机器学习三———模型评估

一.定义

机器学习模型评估是指对训练好的机器学习模型进行性能评估和分析的过程。它旨在了解模型在真实数据上的表现如何,并提供关于模型质量、准确性和可靠性的信息。

二.评估指标

在模型评估中,通常会使用一组预定义的评估指标来度量模型的性能。这些评估指标可以根据具体问题和任务类型而有所不同。以下是一些常见的机器学习模型评估指标:

1. 准确率(Accuracy):模型正确预测的样本比例。

2. 精确率(Precision):模型预测为正类的样本中,实际为正类的比例。

3. 召回率(Recall):实际为正类的样本中,模型预测为正类的比例。

4. F1分数(F1-score):精确率和召回率的加权调和平均值,用于综合考虑模型的准确性和召回率。

5. ROC曲线(Receiver Operating Characteristic curve):以真阳性率(True Positive Rate)为纵轴,假阳性率(False Positive Rate)为横轴,绘制的曲线,用于评估二分类模型的性能。

6. AUC(Area Under the Curve):ROC曲线下的面积,用于度量模型分类效果的综合指标。

7. 均方误差(Mean Squared Error):用于回归问题中度量预测值与实际值之间差异的平均平方值。

8. R2分数(R-squared score):回归模型的拟合优度,表示模型对观测数据的解释能力。

在模型评估过程中,通常会将数据集划分为训练集和测试集,并使用测试集来评估模型的性能。除了单一的评估指标外,还可以通过绘制学习曲线、混淆矩阵、预测错误的示例等方式进行更详细的模型分析和评估。

三.ROC曲线和PR曲线

优点:

ROC曲线是一种非常有用的工具,可用于评估和比较不同模型的性能,并且对于不平衡数据集也能提供更准确的评估。它的优点包括不受阈值选择的影响、适用于不平衡数据集、能够比较多个模型以及易于理解和可视化。

PR曲线是在不平衡数据集上评估分类器性能的重要工具。它对于不同召回率下的精确度变化敏感,并可以直观地展示模型的性能特点。在处理不均衡数据问题时,PR曲线可以帮助我们理解和选择最适合的分类模型。

实际应用:

ROC曲线和PR曲线是评估和比较分类器性能的重要工具,在机器学习和模式识别中有广泛的应用。它们能够帮助我们选择最佳的分类模型、调整分类阈值,并解决不平衡数据集等实际问题。

四.模型评估方法代码实战:

4.1数据收集

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import precision_recall_curve, average_precision_score

# 样本特征
X = np.array([[2.5, 3.5], [1.5, 2.5], [3.5, 3.0], [3.0, 4.0], [2.0, 3.0], [1.0, 1.5], [3.5, 4.5], [4.0, 4.5]])
# 标签(二进制)
y = np.array([0, 0, 0, 0, 1, 1, 1, 1])

4.2初始化KNN模型及模型的拟合和预测概率

# 初始化KNN模型
knn = KNeighborsClassifier(n_neighbors=3)
# 拟合模型
knn.fit(X, y)
# 预测概率
y_score = knn.predict_proba(X)[:, 1]

4.3.1计算ROC曲线

# 计算ROC曲线的假正率(FPR)和真正率(TPR)
fpr, tpr, thresholds = roc_curve(y, y_score)

# 计算AUC(曲线下面积)
roc_auc = auc(fpr, tpr)

 4.3.2绘制ROC曲线

# 绘制ROC曲线
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

4.4.1计算PR曲线

# 计算RPR曲线的召回率(Recall)和精确度(Precision)
precision, recall, thresholds = precision_recall_curve(y, y_score)

# 计算平均精确度(Average Precision)
average_precision = average_precision_score(y, y_score)

4.4.2绘制PR曲线

# 绘制RPR曲线
plt.figure()
plt.step(recall, precision, color='b', alpha=0.2, where='post')
plt.fill_between(recall, precision, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('Precision-Recall curve: AP={0:0.2f}'.format(average_precision))
plt.show()

五.结果图像

ROC曲线:

PR曲线

六.总结

总而言之,机器学习模型评估旨在提供关于模型性能的定量和定性信息,以便选择最佳模型、调整模型参数或改进模型设计。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值