机器学习五———垃圾分类

朴素贝叶斯的定义

朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的分类算法。它是一种简单但有效的分类方法,尤其在文本分类和垃圾邮件过滤等应用中广泛使用。

贝叶斯定理是基于条件概率的一个定理,它描述了在已知先验信息的情况下,如何更新概率估计。朴素贝叶斯算法的“朴素”之处在于它假设特征之间是相互独立的,即给定类别的情况下,特征之间没有相互关联。尽管这个假设在实际情况中往往并不成立,但在很多情况下,朴素贝叶斯仍然表现出色,特别是在高维度的数据集中。

算法的基本思想是通过训练阶段学习先验概率和条件概率,然后在预测阶段使用这些概率来对新样本进行分类。在文本分类中,朴素贝叶斯可以用于判断一段文本属于哪个类别,比如判断一封电子邮件是垃圾邮件还是正常邮件。

数学公式:

实验步骤

1.数据准备:

收集带有标记的数据集,该数据集包含了已经分类为垃圾邮件和非垃圾邮件的样本。每个样本都需要表示为特征向量,这些特征可以是词语、短语或其他文本相关的属性。

2.文本预处理:

对文本数据进行预处理,包括分词、去除停用词、转换为小写等操作。这些步骤有助于简化特征向量的表示,并提高分类的效果。

3.特征提取:

将文本数据转换为特征向量。可以使用词袋模型(Bag of Words)或 TF-IDF(Term Frequency-Inverse Document Frequency)等方法来表示文本特征。

4.训练模型:

使用训练集来学习先验概率和条件概率。计算每个类别的先验概率 \(P(C_k)\) 和每个特征在给定类别下的条件概率 \(P(x_i | C_k)\)。这通常涉及到计算每个词语在垃圾邮件和非垃圾邮件中的出现概率。

5.预测:

对于新的未标记邮件,将其表示为特征向量,并使用贝叶斯定理计算它属于每个类别的后验概率。最终选择具有最高后验概率的类别作为预测结果。

6.评估模型性能:

使用测试集评估模型的性能,通常使用准确率、精确率、召回率等指标来衡量分类器的效果。

7.调整模型参数:

根据性能评估的结果,可能需要调整模型的参数或改进预处理步骤,以提高分类的准确性。

实战代码

1.导入库:

import os
import random
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics

2.定义函数read_emails:

def read_emails(folder):
    emails = []
    labels = []
    for label in ['ham', 'spam']:
        folder_path = os.path.join(folder, label)
        for filename in os.listdir(folder_path):
            with open(os.path.join(folder_path, filename), 'r', encoding='utf-8', errors='ignore') as file:
                content = file.read()
                emails.append(content)
                labels.append(label)
    return emails, labels

该函数用于读取文件夹中的邮件数据,返回邮件内容和对应的标签。邮件数据存储在两个子文件夹('ham'和'spam')中,分别代表非垃圾邮件和垃圾邮件。

3.读取邮件数据:

folder_path = 'email'
emails, labels = read_emails(folder_path)

使用上述定义的read_emails函数读取邮件数据,将邮件内容和标签分别存储在emailslabels中。

4.划分数据集:

X_train, X_test, y_train, y_test = train_test_split(emails, labels, test_size=0.2, random_state=42)

使用train_test_split函数将数据集划分为训练集和测试集,其中80%用于训练,20%用于测试。

5.文本向量化:

vectorizer = CountVectorizer()
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)

使用CountVectorizer将文本数据转换为特征向量。训练集和测试集分别进行向量化。

6.创建并训练朴素贝叶斯分类器:

classifier = MultinomialNB()
classifier.fit(X_train_vec, y_train)

创建Multinomial Naive Bayes分类器,使用训练集进行训练。

7.预测与评估:

y_pred = classifier.predict(X_test_vec)
accuracy = metrics.accuracy_score(y_test, y_pred)
print(f'准确率: {accuracy:.2%}')

使用训练好的模型对测试集进行预测,并计算准确率。

8.输出部分测试集的预测结果:

print("部分测试集的预测结果:")
for i in range(5):
    rand_index = random.randint(0, len(X_test)-1)
    print(f"实际标签: {y_test[rand_index]}, 预测标签: {y_pred[rand_index]}")

随机选择5个样本,输出它们的实际标签和模型的预测标签。

9.输出结果:

10完整代码:

import os
import random
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics

# 读取文件夹中的邮件数据
def read_emails(folder):
    emails = []
    labels = []
    for label in ['ham', 'spam']:
        folder_path = os.path.join(folder, label)
        for filename in os.listdir(folder_path):
            with open(os.path.join(folder_path, filename), 'r', encoding='utf-8', errors='ignore') as file:
                content = file.read()
                emails.append(content)
                labels.append(label)
    return emails, labels

# 读取邮件数据
folder_path = 'email'
emails, labels = read_emails(folder_path)

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(emails, labels, test_size=0.2, random_state=42)

# 将文本数据转换为特征向量
vectorizer = CountVectorizer()
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)

# 创建并训练朴素贝叶斯分类器
classifier = MultinomialNB()
classifier.fit(X_train_vec, y_train)

# 预测测试集
y_pred = classifier.predict(X_test_vec)

# 计算准确率
accuracy = metrics.accuracy_score(y_test, y_pred)
print(f'准确率: {accuracy:.2%}')

# 输出部分测试集的预测结果
print("部分测试集的预测结果:")
for i in range(5):
    rand_index = random.randint(0, len(X_test)-1)
    print(f"实际标签: {y_test[rand_index]}, 预测标签: {y_pred[rand_index]}")

总结

总体而言,朴素贝叶斯算法在垃圾邮件分类等文本分类任务中的优点在于其简单性、高效性和对高维度数据的适应性。然而,需要注意的是,它的“朴素”假设可能在某些实际情况下不成立,因此在特定场景中可能需要考虑其他更复杂的分类算法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值